水质监测的监测方案制订

水质监测的监测方案制订,第1张

监测任务的总体构思和设计(制订流程)
1.明确监测目的。
2.进行调查研究。
3.确定监测对象。
4.设计监测网点。
5.安排采样时间和频率。
6.选定采样和保存方法。
7.选定分析测定技术。
8.提出监测报告要求。
9.制订质量保证程序、措施和方案的实施计划。
地面水质监测方案制订
(一)基础资料收集
1、水体的水文、气候、地质和地貌资料。如水位、水量、流速及流向的变化;降雨量、蒸发量及历史上的水情;河宽、河深、河床结构及地质状况等。
2.水体沿岸城市分布、工业布局、污染源及其排污情况、城市给排水情况等。
3.水体沿岸水资源现状及用途。如饮用水源分布和重点水源保护区,水体流域土地功能及近期使用计划等。
4.历年水质监测资料、水文实测资料、水环境研究成果等。
(二)监测断面和采样点的设置
1、监测断面的布设原则。
2.监测断面设置。
(1)河流监测断面设置。
(2)湖泊(水库)监测断面设置。
3.采样位置的确定
(1)在对调查研究结果和有关资料进行综合分析的基础上,监测断面的布设应有代表性,即能较真实、全面地反映水质及污染物的空间分布和变化规律;根据监测目的和监测项目,并考虑人力、物力等因素确定监测断面和采样点。
(2)有大量废水排入河流的主要居民区、工业区的上游和下游。较大支流汇合口上游和汇合后与干流充分混合处,入海河流的河口处,受潮汐影响的河段和严重水土流失区。湖泊、水库、河口的主要入口和出口。国际河流出入国境线的出入口处。
(3)饮用水源区、水资源集中的水域、主要风景游览区、水上娱乐区及重大水力设施所在地等功能区。
(4)断面位置应避开死水区及回水区,尽量选择河段顺直、河床稳定、水流平稳、无急流浅滩处。
(5)应尽可能与水文测量断面重合;并要求交通方便,有明显岸边标志。
(三)采样时间与采样频率的确定
(1)饮用水源地:全年采样不少于12次,采样时间根据具体情况选定。
(2)河流:较大水系干流和中、小河流全年采样不少于6次,采样时间为丰水期、枯水期和平水期,每期采样两次。流经城市或工业区,污染较重的河流、游览水域,全年采样不少于12次。采样时间为每月一次或视具体情况选定。
(3)排污渠:全年采样不少于3次。
(4)底泥:每年在枯水期采样一次。
(5)背景断面:每年采样一次。在污染可能较重的季节进行。
(6)潮汐河流:全年按丰、枯、平三期,每期采样2天,分别在大潮期和小潮期进行,每次应当在当天涨潮、退潮时采样,并分别加以测定。涨潮水样应当在各断面涨平时采样,退潮时也应当在各断面退平时采样,若无条件,小潮期可不采样。
(7)湖泊、水库:设有专门监测站的湖、库,每月采样不少于1次,全年不少于12次,其他湖、库每年采样2次,枯、丰水期各一次。有废水排入、污染较重的湖、库,应酌情增加采样次数。
(四)采样及监测技术的选择
要根据监测对象的性质、含量范围及测定要求等因素选择适宜的采样、监测方法和技术。
(五)结果表达、质量保证及实施进度计划
对监测中获得的众多数据,应进行科学地计算和处理,并按照要求的形式在监测报告中表达出来。质量保证概括了保证水质监测数据正确可靠的全部活动和措施。质量保证贯穿监测工作的全过程。实施进度计划是实施监测方案的具体安排,要切实可行,使各环节工作有序、协调地进行。
地下水质监测方案的制订
(一)调查研究和收集资料
1、收集、汇总监测区域的水文、地质、气象等方面的有关资料和以往的监测资料。
2.调查监测区域内城市发展、工业分布、资源开发和土地利用情况,尤其是地下工程规模应用等;了解化肥和农药的施用面积和施用量;查清污水灌溉、排污、纳污和地面水污染现状。
3.测量或查知水位、水深,以确定采水器和泵的类型,所需费用和采样程序。
4.在完成以上调查的基础上,确定主要污染源和污染物,并根据地区特点与地下水的主要类型把地下水分成若干个水文地质单元。
(二)采样点的设置
1、背景值监测点的设置
设在污染区外围不受或少受污染的地方。在垂直于地下水流方向的上方设置。
2.监测井的布设
(1)点状污染区(渗坑、渗井和堆渣区的污染物在含水层渗透小的地区形成的),监测井设在距污染源最近的地方。
(2)块状污染区(污灌区、污养区及缺乏卫生设施的居民区),监测井设在地下水流向的平行和垂直方向上。
(3)条(带)状污染区(渗坑、渗井和堆渣区的污染物在含水层渗透大地区及沿河、渠排放的工业废水和生活污水),宜用网格布点法设置监测井。一般监测井在液面下03~05m处采样。
(三)采样时间和采样频率的确定
1、每年在丰水期、枯水期分别采样测定;四季采样;月采样。
2.每一采样期至少监测1次,饮用水每一采样期监测2次,其间隔至少10天,即采一次分析检验一次,10天后再采、检一次,可作为监测数据报出。
3.对有异常情况的井点,应适当增加采样监测次数。
水污染源监测方案的制订
(一)调查研究,收集资料
(二)采样点设置
1、工业废水
(1)在车间或车间处理设备的废水排放口设置采样点,测一类污染物(汞、镉、砷、铅、六价铬、有机氯化合物、强致癌物质等)。
(2)在工厂废水总排放口布设采样点,测二类污染物(悬浮物、硫化物、挥发酚、氰化物、有机磷化合物、石油类、铜、锌、氟、硝基苯类、苯胺类等)。
(3)已有废水处理设施的工厂,在处理设施的排放口布设采样点。为了解废水处理效果,可在进出口分别设置采样点。
(4)在排污渠道上,采样点应设在渠道较直,水量稳定,上游无污水汇入的地方。可在水面下1/4~1/2处采样,作为代表平均浓度水样采集。
2.城市污水(生活污水(sanitarywaste)和医院污水(hospitalsewage)、综合排污口等)
(1)城市污水管网:在一个城市的主要排污口或总排污口设点采样,城市污水干管的不同位置,污水进入水体的排放口,非居民生活排水支管接入城市污水干管的检查井。
(2)城市污水处理厂:在污水处理厂的污水进出口处设点采样
(三)采样时间和频率
工业废水:每年采样监测2-4次。
生活污水:每年采样监测2次,春、夏季各1次。
医院污水:每年采样监测4次,每季度1次。

简介
BKS—3000烟气排放连续监测系统适用于各种锅炉连续废气排放量的监
测,采用直接抽取法,可以连续在线监测颗粒物的浓度、二氧化硫(SO2)浓度、氮氧化合物(NOX)浓度、氧气(O2)含量、烟气温度、烟气压力、烟气流
速,还可以增加一氧化碳(CO)、二氧化碳(CO2)、氯化氢(HCL)、氟化氢(HF)、氨气(NH3)、碳氢化合物(CHX)、湿度等参数的测量。其
控制计算机可以将所测到数据进行处理和存贮;可通过网络与上级环保部门的计算机连接,环保部门可以方便、快捷地调用监测数据。企业内部可以通过局域网,根
据访问权限对数据库进行 *** 作,如读取数据、修改状态参数,甚至对系统进行直接 *** 作。由于采用直接抽取法测量烟气中的污染物浓度,系统可以用标准气对分析仪
进行在线标定,保证监测数据的准确性。气体分析采用的是非分散红外吸收法;含氧量的监测采用寿命可达十年的顺磁氧分析仪器。
一台控制计算机可以同时与多个(最多时可达8个监测点)在线监测点相连,以总线方式进行通讯,并实时处理各点所测量的数据。同时可以通过电话线、GPRS、CDMA等多种形式与上级环保部门联网。
系统组成
· 气体分析仪
· 颗粒物分析仪
· 温度、压力、流速监测仪
· 样气采集系统
· 样气预处理系统
· 保护反吹系统
· 自动标定系统
· 系统控制与数据采集系统
系统特点
◆ 运行稳定
本套系统具有良好的除水、除尘功能,为系统长期安全、稳定地运行提供了保证。
◆ 只须一个分析单元即可实现对4种烟气成份的连续监测
可以同时与多个测量点相连,实现多点多参数同时测量,只需一个分析单元即可实现对最多4种烟气成分的监测,包括NOX、SO2、CO和O2(可根据用户需求选择测量参数)。将多个监测项目的监测功能集成在一个分析单元内,体现了当今烟气连续监测系统的发展方向。
◆ 完善的软件支持
具有友好的界面,支持多线程功能和联机帮助,并且在断电或系统出现死机时,软件可以自动回到原来的运行状态,系统继续运行并且数据不丢失。
◆ 模块化设计
当系统需要增加测量气体参数时,可以最大限度地利用现有的分析仪器资源,为今后的扩展提供了一个开放的平台。维护简单,费用低。
◆ 多选择性
可以满足高、中、低端用户的不同需要,我们有可以实现在1200度高温条件下(冶金、水泥行业)进行在线监测的系统,也有可以专门用于垃圾焚烧炉(包括医用垃圾)的在线监测系统(除上述参数外还可以测定汞蒸汽浓度和二恶英),还有用于监测脱硫脱氮效率的在线监测系统。
◆ 在线自动标定功能
本系统具有自动标定功能并自带标准气,只要预先设定自动标定时间间隔,就可以做到自动标定。
◆ 远程监控
系统具有接受远程指令的功能,可以通过电话线或GPRS或CDMA与系统连接,输入正确的口令,便可接受远程指令并根据指令进行动作,然后将有关的信息传输给指令发出点,为远程诊断和查询提供了方便。
◆ 支持一托二
硬件和软件支持一托二的安装,采用PLC方案控制,具有很好的稳定性、可靠性。软件功能完善,可以输出并显示多个测量点的参数、曲线以及多种数据的比较,监测结果一目了然。

空调不制冷的一个原因:氟利昂不够(又称“雪种不足”)这是正常情况,一般出现在使用三到四年的老空调。空调不是完全不制冷,而是制冷效果不够好。这是因为老空调都是用氟利昂做制冷剂,长期使用会挥发。此外,也不能排除安装不当导致的氟利昂泄漏和机器本身的问题。空调不制冷怎么办:加雪种可以解决空调不制冷的问题。空调不制冷的原因——电源电压不够。电源电压不稳定,经常达不到正常电压,尤其是用电高峰期。当然,这种问题显然不是一个熟练的空调维修师傅能解决的。我们必须从提供稳定的电压开始解决问题。空调不制冷的原因——空调功率不够。这也是不制冷的常见原因之一,但是这种不制冷的原因有很多,比如:大房间用小功率的空调管,还有一些房间,虽然空调功率看起来和房间面积匹配,但是相对密闭(比如宽门窗等。),或者房间内有热源(如电脑等。)当然,西边的玻璃房也是热源之一,等等。空调不制冷怎么办:使空调的功率空间所需要的制冷量相匹配;改变使用环境的条件;增加使用环境的密封性;要解决不制冷的问题,就要减少空调环境中的热源等等。空调制冷原因四——外界环境温度过高。这种不制冷的情况常见于我们的室外机安装在相对封闭的空间或者室外机周围温度过高的情况,这样极易造成室外机所在的狭小空间内空气不流通,导致散热器散发的热量无法流走,空调不制冷;还有一种常见的说法是,当室外温度超过43度时,大部分空调很难将室内的热量通过室外机的散热器传递到室外,这样也会造成空调不制冷。空调不制冷怎么办:改变室外机的使用环境(搬离高温环境或使室外机周围的空气更容易流通),安装空调室外机时注意选择正确合理的位置。空调不制冷的原因五——空调长期不清洗保养。买空调不代表高枕无忧。由于室外机安装在室外,使用时间长了,会在散热器上吸附大量灰尘、垃圾等污物,使散热器散热效果差,空调不制冷;此外,长期忽视空调保养会使室内空气不卫生,更容易出现空调病,增加耗电量,缩短空调使用寿命等。

当前全球面临的许多巨大挑战:气候变化、能源枯竭、粮食生产、生命 健康 等,世界经济论坛评选的2021年“十大新兴技术”中主要围绕当前全球面临的主要问题展开,这十项技术都有望深刻改变人类的未来。

国际 社会 为应对全球气候变化作出的全面承诺将进一步催生新技术。二氧化碳作为温室效应的罪魁祸首,各个国家和行业一直在为减少碳排放作出积极的努力。美国、英国、欧盟等主要发达国家以及中国、印度等发展中大国向国际 社会 作出承诺,实现到2030年碳排放总量大幅下降。

同时,农业及食品领域还将进一步发展人造肉(Impossible Burger、Beyond Meat)等蛋白质替代品的市场供应。通过物联网连接的传感器数据将越来越多地支持土地、作物、肥料、灌溉用水等智能化管理,这些都将有助于进一步减少碳排放。

磷肥 为世界粮食作为的主要肥料, 磷肥的制备 很大程度上依赖于含氮工业肥料的使用。据联合国粮食及农业组织称,全球每年需要约11亿吨氮来维持全球作物生产。而氮肥通常是通过将空气中的氮转化为氨来生产的,含氨肥料维持了全球大约 50% 的粮食生产,而制备含氨肥料的过程将消耗世界主要能源需求的1%,工业化过程排放的二氧化碳占全球碳排放量的 1% 到 2%。

为了降低这部分的碳排放量, 研究人员正在通过自然方法中获取制造氮肥的解决方案。例如,玉米、谷物等主要粮食作物依赖土壤中的无机氮,豆科植物的根与土壤细菌相互作用,形成根瘤,通过细菌固氮的能力将大气中的氮转化为氨,这些自然固氮方法给了研究人员很大的启发。

目前,发达国家政府和 社会 资本的投入为工程固氮领域的研究和开发提供了强有力的支持, 未来利用自然共生力量的作物可能很快就会成为更可持续粮食生产的关键要素。

新技术将推动人体呼气的检测方式进行疾病诊断,这种采样方式远比抽血要节省时间。 采用新技术进行生物检测类似于警察查酒驾的酒精呼吸分析仪,未来疾病诊断也可以采取这样的方式。

人体的呼吸中含有 800 多种化合物,最近的研究表明人体呼出的气体含有的不同化合物浓度与疾病之间存在很强的相关性。例如,丙酮浓度升高是糖尿病的强烈迹象,一氧化氮浓度升高 可以作为呼吸系统疾病的生物检测标识;各种醛类指标升高说明患有肺癌的概率极大。

而且采用呼吸检测的方式将会大幅减少检测等待时间,通常仅需几分钟呼吸检测 传感器的数据通过外部计算机分析就可以生成检测报告。

除了比抽血更快地出具结果之外,呼吸传感器采取的是非侵入的检测方式,在医疗资源有限的国家,它的易用性、便携性和成本效益将提供更好的医疗保障。呼吸检测还有助于减轻社区的病毒传播,其方式类似于在进入超市或餐馆等公共空间之前对个人进行体温检查的方式。

2020 年3 月,以色列的科研人员已经完成了 探索 性临床应用,采用呼吸检测的方式检测新冠病毒(COVID)检测结果达到95% 准确度和100%灵敏度。目前该项技术正在进行广泛的临床试验,但距离全面普及尚需技术进一步成熟。

如果您去药房时,药剂师不是通过预制药物的方式来填写您的处方,而是按照您的诊断情况 采用量身定制的方式配制最符合您体征的药物,这听起来是不是很神奇?

由于药品的特殊性,传统上药物生产都集中在具备资质的厂商,通过大批量生产的方式完成。药物的成分和剂量都是标准化的,不可能为个人定制成分和剂量不同的药物。然而微流体和按需药物制造的最新技术有望使这一想法成为现实。

按需药品制造,也称为连续流程药品制造,可以一次性完成药品生产。它的工作原理是将药品成分通过流体方式输入小型合成设备,由合成设备按照要求调配成分,可以实现为患者量身定制所需药品。

而这项技术更大的意义是,可以在偏远地区或野战医院进行部署,随时根据需求生产药品。这也意味着储存和运输药物所需的资源更少,而且剂量可以针对个别患者量身定制。

2016 年,美国麻省理工与国防高级研究计划局(DARPA),已经成功研发了一台冰箱大小的药品合成设备,并在24 小时内制备了1000剂常用药物:盐酸苯海拉明,用于缓解过敏症状;地西泮,用于治疗焦虑和肌肉痉挛;抗抑郁药盐酸氟西汀;局部麻醉剂盐酸利多卡因。

目前用于按需药物制造的便携式设备成本在数百万美元,阻碍了广泛推广。而且还需要新的质量保证和质量控制标准来规范配方的个性化和单人药品制备。但是,随着成本的下降和监管框架的完善,未来药物按需制造将会为药品行业带来颠覆性的变革。

如今构成物联网 (IoT) 无线设备已经成为网络世界的支柱。物联网无线设备被部署为家庭中的生活工具、生物医学的可穿戴设备以及危险和难以到达区域的传感器。随着物联网的发展,它将更广泛应用于农业节水灌溉和农药喷洒、智能电网、桥梁或混凝土基础设施缺陷监测、泥石流和地震等灾害的预警。

预计到2025年,全球将有400亿台物联网设备上线,为这些设备提供便捷的按需供电是一项新挑战。5G 无线信号比4G传输会发射更多的辐射能量,这就预示着许多低功耗无线设备将永远不需要插入的方式供电。

目前科研人员成功采集从Wi-Fi路由器以及微波射频设备的辐射能量为低功耗物联网设备供电,这项新兴技术将把辐射能量收集提升到一个新的水平,为物联网设备大量部署提供了能源解决方案。

未来生命科学将更加专注于增加“ 健康 寿命”,而不仅仅是寿命。

据世界卫生组织的数据,2015 年至 2050 年间,全球 60 岁以上人口的比例将从 12% 增加到 22%。老年痴呆、癌症、糖尿病、动脉硬化等慢性疾病对老年人的 健康 和 社会 发展构成了巨大挑战,逆转衰老或寻找“青春之泉”一直是人类的愿望。

科研人员通过 基因组编码技术 ,量化所有基因活性、细胞中蛋白质和代谢物的浓度,结合遗传学研究,已经越加清晰人类衰老的关键机制,科研人员已经发现人体的生物学年龄的标识符是人体疾病和死亡风险的关键预测指标。

最近科研人员通过对人体衰老机制的不断理解,积极推动了靶向治疗的发展。例如,最近的一项初步临床研究表明,服用包括人类生长激素在内的药物混合物一年,可使人体“生物钟”倒转15 年。科学家们还发现将年轻人类血液中的蛋白质注入老年小白鼠时,可以改善与年龄相关的大脑功能障碍。结果表明,通过科学的方式可以逆转人类与年龄相关的认知能力下降等疾病。

目前通过 基因工程的方法来分析和设计,加之政府和医疗资本的大力推动下,全球已有100 多家公司研发的药物进入临床前阶段或早期临床试验阶段。这项新技术让人类越发的有希望对抗衰老,甚至挑战“生命的终极课题---死亡”。

工业规模合成氨可以说是 20 世纪最重要的发明之一。氨用于生产肥料,为全球 50% 的粮食生产提供燃料,使其成为全球粮食安全的关键。然而,氨合成是一种能源密集型化学过程,需要催化剂来用氢气固定氮。

氢气必须合成生产,目前使用化石燃料、天然气、煤或石油在高温下蒸馏以产生氢气。问题是,这个过程会产生大量的二氧化碳,占全球总排放量的 1% 到 2%。

使用可再生能源分解水产生的绿色氢气有望改变这种状况。除了消除制氢过程中的碳排放外,该方式还能制备更纯净氢气,且不含使用化石燃料时掺入的化学物质,例如含有硫和砷的化合物,这些化合物会“毒化”催化剂,从而降低反应效率。

更清洁的氢气也意味着可以开发出更优质的催化剂,而且不再需要忍受化石燃料中的有毒化学物质。目前,丹麦的公司已经宣布开发出用于绿色氨生产的新型催化剂。

目前绿色氢气制造的主要障碍是高成本。为了解决这个问题欧洲能源企业启动了 科技 创新研发,旨在2030年之前以每公斤15欧元的价格提供绿色氢气。

对慢性病的连续、无创监测,一直是医学界的期望。好消息是无线、便携式和可穿戴监测传感器将很快得到临床应用。监测器使用多种方法来检测汗液、眼泪、尿液或血液中的生物标志物,可穿戴监测传感器使用光或低功率电磁辐射(类似于手机或智能手表)监测慢性疾病。

例如,电子隐形眼镜可以通过眼泪,获取癌症生物标志物或血糖水平以进行糖尿病监测;具有射频识别技术的护齿器唾液传感器可以监测唾液生物标志物对口腔溃疡、呼吸系统炎症、HIV、肠道感染、癌症和COVID进行预警。

根据联合国的估计,使用 3D 打印机建造房屋可以帮助解决 全球16亿人 住房不足的挑战。

3D 打印房的概念并不新鲜,灵感来源于火星移民的项目,因为火星没有建造房屋所需的大 部分材料。将混凝土、沙子、塑料、粘合剂等混合物通过大型 3D 打印机打印,可以作为一种相对简单和低成本的建造方法,似乎非常适合缓解偏远贫困地区的住房问题。

如今,至少有 100 亿个有源设备构成了物联网 (IoT),预计未来 10 年这一数字将翻一番。 为了最大限度地发挥物联网在通信和自动化方面的优势,需要将设备分布在全球范围内,收集数据。数据在云数据中心被处理,使用人工智能来识别数据异常从而为人类提供预警。例如气候异常和自然灾害。但问题是:地面蜂窝网络覆盖的面积不到全球的一半,在连接方面留下了巨大的空隙。

天基物联网系统可以使用距离地球数百公里的低成本、低重量(不到 10 公斤)纳米卫星网络弥补这些空隙。1998年发射第一颗纳米卫星到今天,大约有 2000 颗纳米卫星用作轨道监视。SpaceX Starlink、OneWeb、Amazon 和 Telesat 等公司已将纳米卫星用于提供全球互联网覆盖。

太空物联网建设仍然面临着众多挑战。例如,纳米卫星的寿命相对较短,约为两年,必须得到昂贵的地面基础设施支持。为了应对轨道太空垃圾日益严重的问题,国际航天机构正在计划在卫星功能寿命结束时自动脱离轨道或使用其他航天器收集它们。

目录 1 拼音 2 英文参考 3 国标编号 4 CAS号 5 中文名称 6 英文名称 7 分子式 8 外观与性状 9 分子量 10 熔点 11 沸点 12 溶解性 13 密度 14 稳定性 15 危险标记 16 主要用途 17 健康危害 18 毒理学资料及环境行为 19 现场应急监测方法 20 实验室监测方法 21 环境标准 22 泄漏应急处理 23 防护措施 24 急救措施 1 拼音

liù fú huà liú

2 英文参考

sulfur hexafluoride

3 国标编号

22021

4 CAS号

2551624

5 中文名称

六氟化硫

6 英文名称

sulfur hexafluoride

7 分子式

F6S

8 外观与性状

无色无臭气体

9 分子量

14605

10 熔点

51℃

11 沸点

638℃

12 溶解性

微溶于水、乙醇、乙醚

13 密度

相对密度(水1)167(100℃);相对密度(空气1)511

14 稳定性

稳定

15 危险标记

5(不燃气体)

16 主要用途

用作电子设备和雷达波导的气体绝缘体

17 健康危害

侵入途径:吸入。

健康危害:纯品基本无毒。但产品中如混杂低氟化硫、氟化氢特别是十氟化硫时,则毒性增强。

18 毒理学资料及环境行为

急性毒性:LD505790mg/kg(兔静脉)

危险特性:若遇高热,容器内压增大,有开裂和爆炸的危险。

燃烧(分解)产物:氧化硫、氟化氢。

19 现场应急监测方法

仪器法

20 实验室监测方法

气相色谱法《空气中有害物质的测定方法》,杭士平主编

21 环境标准

前苏联(1975) 工作环境空气中有害物质的最大容许浓度 60mg/m3

22 泄漏应急处理

迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿一般作业工作服。尽可能切断泄漏源。合理通风,加速扩散。如有可能,即时使用。漏气容器要妥善处理,修复、检验后再用。

23 防护措施

呼吸系统防护:一般不需特殊防护。高浓度接触时可佩戴过滤式防毒面具(半面罩)。或自给式呼吸器。

眼睛防护:必要时,戴安全防护眼镜。

身体防护:穿一般作业工作服。

手防护:戴一般作业防护手套。

其它:工作毕,淋浴更衣。保持良好的卫生习惯。进入罐、限制性空间或其它高浓度区作业,须有人监护。

24 急救措施

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13139790.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-10
下一篇 2023-06-10

发表评论

登录后才能评论

评论列表(0条)

保存