人工智能根据什么输入

人工智能根据什么输入,第1张

人工智能根据不同的应用场景和任务需要,可以接收不同类型的输入。一般来说,人工智能输入可以分为以下几类:
1 文本输入:人工智能可以接收文字信息作为输入,如语音、文档、聊天记录等。通过自然语言处理、文本挖掘等技术,可以对文本信息进行分析、分类、提取等 *** 作。
2 图像输入:人工智能可以接收图像作为输入,如照片、传感器数据、监控画面等。通过计算机视觉技术、图像处理等手段,可以对图像信息进行分类、识别、目标检测等 *** 作。
3 音频输入:人工智能可以接收音频信息作为输入,如语音、音乐、语音识别输出等。通过语音识别、音频分析等技术,可以对音频信息进行识别、转录、分类等 *** 作。
4 数据库输入:人工智能可以接收数据库中的信息作为输入,如企业数据、互联网数据、传感器数据等。通过数据挖掘、机器学习、深度学习等技术,可以对大量的数据进行分析、预测、优化等 *** 作。
5 传感器输入:人工智能可以通过传感器等物联网设备获取物理信息作为输入,如温度、湿度、压力、位置等。通过物联网技术、数据分析等手段,可以对传感器信息进行采集、传输、分析等 *** 作。
总之,人工智能可以接收不同类型的输入,包括文字、图像、音频、数据、物理量等,通过机器学习、深度学习、计算机视觉、自然语言处理、大数据等技术,进行信息处理、分析和应用。

感知层:底层数据采集职能,包括芯片、连接芯片和应用设备的模组、传感器、各类识别技术等

1、芯片:低功耗、高可靠性的半导体芯片应用广泛,MCU/SoC逐渐渗透物联网领域。MCU芯片复杂度较低,适用于智能设备的短距离信息运输,主要应用于智能家居、消费电子、医疗保健和工业电子等领域;SoC芯片系统复杂度较高,集成功能更丰富,支持运行多任务复杂系统,可应用于功能较复杂的嵌入式电子设备,应用于无人机、自动驾驶和工业互联网等领域

2、无线模组:为物联网提供网联能力的基础硬件,将芯片、存储器和功放器件等集成在一块线路板上,并提供标准接口,在物联网产业中处于承上启下的中间环节,向上连接芯片行业,向下连接各类终端设备,终端设备借助无线模组实现通信或定位的功能。

3、传感器:作为物体的“五官”,传感器承担采集数据、感知世界的重任,不断向智能化、高精度、微型化的方向发展,市场空间广阔。传感器与MEMS结合是当下技术的新趋势,MEMS传感器集成通信、CPU、电池等组件及多种传感器,具有体积小、功耗低、成本低、集成度高、智能化特点,广泛应用于消费电子、医疗和车联网等领域。

涉及企业:

芯片

翱捷科技:具备全球稀缺的全制式蜂窝基带芯片研发能力的平台型芯片设计企业。2015年成立以来一直专注于无线通信芯片的研发和技术创新。公司各类芯片产品可应用于手机、智能穿戴设备为代表的消费电子市场和以智慧安防、智能家居、自动驾驶为代表的智能物联市场。

先科电子:领先的高质量模拟和混合信号半导体产品供应商。成立于1960年,主要为客户提供电源管理、保护、高级通信。人机界面、测试与测量以及无线和感应产品方的专有解决方案。

广芯微电子:成立于2017年,一家为客户提供创新解决方案的集成电路设计企业,公司开发包括面向工业物联网(IIoT)并支持边缘计算的专用处理器芯片、面向LPWA的IoT连接专用芯片、IoT基带处理器芯片、以及应用于传感器信号调理的专用芯片。

华为海思:全球领先的Fabless半导体与器件设计公司,前身为华为集成电路设计中心,2004年注册成立实体公司,提供海思芯片的对外销售及服务。

联发科:全球第四大无晶圆半导体公司,联发科技的核心业务包括移动通信、智能家居与车用电子,着重研发适用于跨平台的芯片组核心技术,联发科的芯片经过优化,能在极低散热量且极度节能的模式下运行,以延长电池续航力,时时刻刻达到高效能、高电源效率与连网能力的完美平衡。

紫光展锐:我国集成电路设计产业的龙头企业。公司于2013年成立,致力于移动通信和物联网领域核心芯片的研发及设计,产品包括移动通信中央处理器、基带芯片、AI芯片、射频前端芯片、射频芯片等各类通信、计算及控制芯片,其物联网解决方案支持众多智能电子产品,包括智能手机、平板电脑、Wi-Fi调制解调器、家用设备、可穿戴设备、互联汽车产品等。

移芯通信:为中国自主研发的超低功耗NB-IoT和Cat-M物联网芯片供应商。公司于2017 年成立,2020年12月完成B轮融资。主要业务为蜂窝物联网芯片的研发和销售,致力于设计全球极致性价比的蜂窝物联网基带芯片。

高通:是全球领先的无线科技创新者,也是5G研发、商用与实现规模化的推动力量。成立于1985年,1991年在纳斯达克上市。Qualcomm主要研发无线芯片平台和其它产品解决方案,凭借行业领先的技术解决方案以及在标准组织中的积极贡献,Qualcomm成为赋能无线生态系统不可或缺的一部分。

诺领科技成立于2018年9月,是探索满足IoT需求的全集成、低功耗无线SoC解决方案的先行者。诺领科技作为一家广域无线物联网芯片设计公司,拥有射频模拟、基带通信系统、GNSS、SoC系统和软件方面的顶尖人才,致力于发布最佳SoC解决方案。公司目前推出的产品包括物联网系统级芯片NB-IoT和Cat-M SoCs,服务于广泛的市场,其中包括智慧城市、可穿戴设备、资产追踪等等。

芯翼信息是5G物联网端侧SoC创新领导者。成立于2017年3月,公司专注于物联网通讯芯片(NB-IoT)的研发和销售。其产品XY1100是全球首颗single  die集成CMOS  PA的量产NB-IoT  SoC,具有超低功耗、超小体积模块设计和开发灵活等优势,可应用于智慧气表、智慧水表、烟感、电动车、物流跟踪、智慧穿戴等应用场景。

智联安科技是一家专业从事芯片设计的国家高新技术企业。成立于2013年9月,公司总部位于中国北京,在硅谷、武汉、合肥等多地设有子公司和技术研发中心。公司致力于无线通信芯片的技术研发,目前已于2019年8月成功完成NB-IoT终端通信芯片MK8010量产流片,并在多个行业中实现落地应用。

中兴微电子为中国领先的通信IC设计公司。成立于2003年,中兴微电子专注于通信网络、智能家庭和行业应用等通信芯片开发,自主研发并成功商用的芯片达到100多种,覆盖通信网络“承载、接入、终端”领域,服务全球160多个国家和地区,连续多年被评为“中国十大集成电路设计企业”。

Nordic Semiconductor北欧半导体是专注研究物联网无线技术无晶圆厂半导体公司。公司专注于低功耗无线技术产品,包括短距离蓝牙,2020年从Imagination Technologies收购的Wi-Fi技术和LTE-M / NB-IoT蜂窝物联网解决方案。

Marvell美满是高性能数据基础架构产品的全球半导体解决方案提供商。成立于1995年,Marvell专注模拟,混合信号,计算,数字信号处理,网络,安全性和存储领域,提供产品和解决方案来满足汽车,运营商,数据中心和企业数据基础架构市场日益增长的计算,网络,安全性和存储需求。公司当前的产品主要包括两大类:网络和存储。

Broadcom博通是全球领先的有线和无线通信半导体公司。拥有50年来的创新,协作和卓越工程经验,公司设计提供高性能并提供关键任务功能的产品和软件,包括半导体解决方案和基础设施软件解决方案,半导体解决方案主要包括明星级的有线基础设施业务(以太网交换芯片/数据包处理器/ASCI等)和无线芯片业务(Wi-Fi 芯片/蓝牙/GPS 芯片等)。基础设施软件部门主要包括主机、企业软件解决方案和光纤通道存储区域网络业务。

NXP恩智浦半导体公司是嵌入式应用安全连接解决方案的全球领导者。公司于2006年在荷兰成立,前身为荷兰飞利浦公司于1953年成立的半导体事业部,致力于为客户提供广泛的半导体产品组合,包括微控制器,应用处理器,通信处理器,连接芯片组,模拟和接口设备,RF功率放大器,安全控制器和传感器等

乐鑫科技是一家专业的物联网整体解决方案供应商。公司在2008年4月成立于上海,是一家主要从事智能物联网Wi-Fi  MCU通信芯片与模组研发设计与销售的公司。公司采用Fabless的经营模式,将晶圆制造、封装和测试环节委托于专业代工厂商。近年来,公司牢牢把握智能物联网行业的机遇,主要产品Wi-Fi MCU通信芯片目前主要运用于智能家居、智能照明、智能支付终端、智能可穿戴设备、传感设备及工业控制等物联网领域

晶晨股份是全球布局、国内领先的集成电路设计商。成立于2003年,公司专注于为多媒体智能终端SoC芯片的研发、设计与销售,芯片产品主要应用于智能机顶盒、智能电视和AI音视频系统终端等科技前沿领域。公司属于典型的Fabless模式IC设计公司,将晶圆制造、芯片封装和芯片测试环节分别委托给专业的晶圆制造企业和封装测试企业代工完成,自身则长期专注于多媒体智能终端SoC芯片的研发、设计与销售,已成为智能机顶盒芯片的领导者、智能电视芯片的引领者和AI音视频系统终端芯片的开拓者。

蜂窝模组企业

移远通信:全球领先的物联网模组龙头。公司成立于2010年,从事物联网领域无线通信模组及其解决方案的设计、生产、研发与销售服务,可提供包括无线通信模组、物联网应用解决方案及云平台管理在内的一站式服务。

广和通:作为首家上市的无线通讯模组企业,近十年为公司业务的快速发展期。成立于1999年,并于2017年在深圳证券交易所创业板上市,成为中国无线通讯模组产业中第一家上市企业。公司主要从事无线通信模块及其应用行业的通信解决方案的设计、研发与销售服务。

美格智能:全球领先的无线通信模组及解决方案提供商。成立于2007年,美格智能专注于为全球客户提供以MeiGLink品牌为核心的标准M2M/智能安卓无线通信模组、物联网解决方案、技术开发服务及云平台系统化解决方案。

日海智能:通信行业连接设备龙头,成立于2003年,2017年相继收购了龙尚科技与芯讯通,入股美国艾拉,在国内率先实现了“云+端”的物联网战略布局,卡位物联网发展关键环节;在2018年重新确立了AIoT人工智能物联网发展战略,

高新兴:全球领先的智慧城市物联网产品与服务提供商。成立于1997年,公司长期致力于研发基于物联网架构的感知、连接、平台层相关产品和技术,从下游物联网行业应用出发,以通用无线通信技术和超高频RFID技术为基础,融合大数据和人工智能等技术,实现物联网“终端+应用”纵向一体化战略布局,构筑物联网大数据应用产业集群,并成为物联网大数据应用多个细分行业领先者,服务于全球逾千家客户。目前公司正处于战略和资源进一步聚焦阶段,重点聚焦车联网和执法规范化两大垂直应用领域。

有方科技:物联网接入通信产品和服务提供商。成立于2006年,公司致力于为物联网行业提供稳定可靠的接入通信产品和服务。公司的主营业务为物联网无线通信模块、物联网无线通信终端和物联网无线通信解决方案的研发、生产(外协加工方式实现)及销售。

合宙通信:一家专业提供物联网无线通信解决方案技术产品和服务的高科技企业。成立于2014年,公司致力于提供基于通信模块的智能硬件、软件平台、云平台等综合解决方案

鼎桥通信:行业无线解决方案的领导者。成立于2005年,公司专注于无线通信技术与产品的创新,布局三大业务板块:行业无线、物联网&5G、行业定制终端。

锐明技术:全球商用车载监控龙头。成立于2002年,公司聚焦商用车视频监控和车联网18年,细分行业龙头公司,产品覆盖商用车全系车型。公司外销“商用车通用监控产品”,内销“商用车行业信息化产品”,全球累计超过120万辆商用车安装有公司的产品

传感器

奥比中光:一家全球领先的AI 3D 感知技术方案提供商。公司成立于2013年,在2020年12月进行上市辅导备案。公司拥有从芯片、算法,到系统、框架、上层应用支持的全栈技术能力,主要产品包括3D视觉传感器、消费级应用设备和工业级应用设备技术产品,其AI 3D 感知技术广泛应用于移动终端、智慧零售、智能服务、智能制造、智能安防、数字家庭等领域。

歌尔股份:一家电子元器件制造商,成立于2001年,属于消费电子行业,主营业务可分为精密零组件业务、智能声学整机业务和智能硬件业务。

汉威科技:气体传感器龙头企业,成立于1998年,并于2009年10月作为创业板首批上市公司在深交所创业板上市。公司致力于气体传感器和仪表的制造、并提供物联网解决方案

联创电子:成立于1998年,公司主营业务为研发、生产和销售触控显示类产品和光学元件产品。公司现已形成光学镜头和触控显示两大业务板块,主要产品包括高清广角镜头、平面保护镜片、手机触摸屏、中大尺寸触摸屏、显示模组、触控显示一体化模组等

瑞声科技:全球领先的智能设备解决方案提供商,在声学、光学、电磁传动、精密结构件、射频天线等领域提供专有技术解决方案。公司成立于1993年,公司是电磁器件、射频天线、精密结构件等多个细分领域的行业冠军,也是5G天线产品的重要供应商

睿创微纳公司是一家专业从事专用集成电路、红外热像芯片及MEMS传感器设计与制造,成立于2009年。公司具有完全自主的知识产权,为全球客户提供性能卓越的红外成像MEMS芯片、红外探测器、ASIC 处理器芯片、红外热成像与测温机芯、红外热像仪、激光产品光电系统。

远望谷:我国物联网产业的代表企业,成立于1999年,公司主营业务集中在物联网感知层和应用层,为多个行业提供基于RFID技术的系统解决方案、产品和服务。

金溢科技:一家智慧交通与物联网核心设备及解决方案提供商。公司创立于2004年,公司产品主要包括高速公路ETC产品、停车场ETC产品、多车道自由流ETC产品和基于射频技术的路径识别产品。

杭州士兰微电子:一家专业从事集成电路芯片设计以及半导体微电子相关产品生产的企业。公司成立于1997年,并于2003年3月在上交所主板上市。公司主要产品是集成电路以及相关的应用系统和方案,主要产品包括集成电路、半导体分立器件、LED(发光二极管)产品等三大类。

水晶光电:专业从事光学光电子行业的设计、研发与制造,专注于为行业领先客户提供全方位光学光电子相关产品及服务的公司。公司创建于2002年8月

敏芯股份:成立于2007年,是一家专业从事微电子机械系统传感器研发设计和销售的的高新技术企业,也是国内唯一掌握多品类MEMS芯片设计和制造工艺能力的半导体芯片上市公司,主营产品包括MEMS麦克风、MEMS压力传感器和MEMS惯性传感器

必创科技:成立于2005年,无线传感器网络系统解决方案及MEMS传感器芯片提供商

固锝电子:成立于1990年,2006年在深交所主板上市,是国内半导体分立器件二极管行业完善、齐全的设计、制造、封装、销售的厂商。

感知交互企业

出门问问:以语音交互和软硬结合为核心的AI公司。公司成立于2012年,作为入选“新基建产业独角兽TOP100”的人工智能企业,出门问问拥有完整的“端到端”语音交互相关技术栈,包括声音信号处理、热词唤醒、语音识别、自然语言识别、自然语言理解、语音合成等尖端技术。

汉王科技:国内人工智能产业的先行者,成立于1998年,在人工智能领域深耕二十多年,是一家模式识别领域的软件开发商与供应商,主营业务包括“人脸及生物特征识别”、“大数据与服务”、“智能终端”、“笔触控与轨迹”等

科大讯飞:亚太地区知名的智能语音和人工智能上市企业,公司成立于1999年,公司主营业务包括语音及语言、自然语言理解、机器学习推理及自主学习等人工智能核心技术研究、人工智能产品研发和行业应用落地。科大讯飞作为中国人工智能产业的先行者,在人工智能领域深耕二十年,公司致力让机器“能听会说,能理解会思考”,用人工智能建设美好世界,在发展过程中形成了显著的竞争优势。

声智科技:融合声学和人工智能技术的平台服务商,也是全球人工智能 *** 作系统领域的开拓者。公司成立于2016年4月,拥有声学与振动、语音与语义、图像与视频等远场声光融合算法,以及开源开放的壹元人工智能交互系统(SoundAI Azero),具有声光融合感知、人机智能交互、内容服务聚合、数据智能分析、IoT控制和即时通讯等能力。

云知声:致力于AI产业的高新技术企业,成立于2012年6月,总部位于北京。公司以AI语音技术起家,经过多年经验和技术的积累,逐渐构筑起一个涵盖机器学习平台、AI芯片、语音语言、图像及知识图谱等技术的技术城池,成为了具有世界顶尖智能语音技术的独角兽

生物识别企业

商汤科技:全球领先的人工智能平台公司,也是中国科技部指定的首个“智能视觉”国家新一代人工智能开放创新平台。公司自主研发并建立了全球顶级的深度学习平台和超算中心,推出了一系列领先的人工智能技术,包括:人脸识别、图像识别、文本识别、医疗影像识别、视频分析、无人驾驶和遥感等。商汤科技已成为亚洲领先的AI算法提供商。

神州泰岳:致力于将人工智能/大数据技术、物联网通讯技术、ICT技术进行融合,大力提升行业/企业组织信息化、智能化的质量与效率的高新技术企业。公司成立于2001年

端侧BIoT

比特大陆:是一家全球领先的科技公司,成立于2013年。公司立足中国,以全球视野整合前沿研发资源,专注于高速、低功耗定制芯片设计研发,其产品包括算力芯片、算力服务器、算力云,主要应用于区块链和人工智能领域。

姓名:陈心语  学号:21009102266 书院:海棠1号书院
转自: 人工智能在中国航天的应用与展望_数据 (sohucom)

嵌牛导读

随着物联网、大规模并行计算、大数据和深度学习算法等技术的突破,人工智能近年来取得了突飞猛进的发展,在图像识别、语音识别、自然语言处理、无人驾驶、智能机器人等众多领域展现出令人期待的发展前景,并得到了国内外各政府的关注和支持;该文将人工智能技术与运载火箭、深空探测器、武器装备等航天应用相结合,论述其在自主规划航天任务、高效智能地面测试、全面快速设计保障等方面的应用模式,并从产品规划、顶层设计、产品打造、具体实施几个方面对中国航天后续发展人工智能技术提出了相关的对策建议。

嵌牛鼻子人工智能运用于航天。

嵌牛提问人工智能在航空航天中有什么运用呢?

嵌牛正文
岳梦云, 王 伟, 张羲格

(北京宇航系统工程研究所,北京 100076)

摘要: 随着物联网、大规模并行计算、大数据和深度学习算法等技术的突破,人工智能近年来取得了突飞猛进的发展,在图像识别、语音识别、自然语言处理、无人驾驶、智能机器人等众多领域展现出令人期待的发展前景,并得到了国内外各政府的关注和支持;该文将人工智能技术与运载火箭、深空探测器、武器装备等航天应用相结合,论述其在自主规划航天任务、高效智能地面测试、全面快速设计保障等方面的应用模式,并从产品规划、顶层设计、产品打造、具体实施几个方面对中国航天后续发展人工智能技术提出了相关的对策建议。

关键词: 人工智能; 大数据; 航天应用

0  引言

在十二届全国人大五次会议上,国务院总理李克强在作政府工作报告时表示,要“全面实施战略性新兴产业发展规划,加快新材料、人工智能、集成电路、生物制药、第五代移动通信等技术研发和转化”,这也是“人工智能”这一表述首次出现在政府工作报告中。

近年来,物联网、大规模并行计算、大数据和深度学习算法这四大催化剂的发展,以及计算成本的降低,使得人工智能技术突飞猛进。2016年12月,升级版“AlphaGo”化名“master”在60场互联网棋局车轮大战中连胜柯洁九段、陈耀烨九段、朴廷桓九段、芈昱廷九段、唐韦星九段等高手,取得全胜战绩,引起各界对人工智能的广泛关注与讨论。

1  人工智能的四大先决条件

11  物联网

随着摄像头、麦克风、各种类型传感器的发展,基于物联网技术的智能设备得到了飞速提升,而大量智能设备的出现则进一步加速了传感器领域的繁荣。这些传感器负责采集数据、记忆、分析、传送数据,将外部世界数字化,为智能系统提供了多维度的数据输入,成为数字世界与物理世界交互、反馈的接口和手段。

12  大规模并行计算

并行计算(Parallel Computing)指同时使用多种计算资源解决一个计算问题的过程,能够有效的提高计算速度和处理能力的一种有效手段。海量的分布式计算资源和超高速计算能力,令快速处理大量数据、训练复杂模型、用知识体系代替人类常识成为可能。这些知识和模型为人类和机器人提供智能的辅助决策,让人工智能成为现实。

13  大数据

大数据具备Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)的5V特点。在过去,要尽可能全面地认识某项事物,必须合理设计抽样调查的策略,使样本能够尽量覆盖全集特征。随着计算能力的提升,可以不再采用随机分析法这样的权衡之策,而采用所有数据进行分析处理。大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。海量的数据为人工智能的学习和发展提供了资源。通过知识挖掘,可以从大量有噪声的随机实际应用数据中,提取人们事先不了解但是隐藏在数据中的有价值的信息和知识。这种对隐性信息的挖掘是大数据价值的核心,也是实现人工智能的关键。

14  深度学习算法

深度学习算法作为机器学习的一个分支,由Hinton等人于2006年提出,是人工智能迎来新一轮飞速发展最重要的核心技术[1]。深度学习算法用非监督式或半监督式的特征学习和分层特征提取高效算法来替代手工获取特征,其中最广为使用的算法包括卷积神经网络(convolutional neural networks,CNN)、循环神经网络(recurrent neural network,RNN)长短期记忆网络(long short-term memory,LSTM)等,需要根据具体应用场景和数据特征加以选择。深度学习是对人类思维方式的建模,让机器能够理解人的行为,并将知识运用到与用户的交互中,达到机器“人性化”的终极目标,实现人工智能技术在商业中的落地。

2  人工智能的细分领域

21  图像识别

通过结合大数据的训练,人工智能可以对图像进行预处理、图像分割、特征提取和判断匹配。在图像识别的技术框架中,人脸识别应用非常广泛。人脸识别是基于人的脸部特征信息进行身份识别的一种生物识别技术。目前国内领先企业旷视科技的人脸识别准确率已高达99999%。此外,在产品生产质量检验上,图像识别技术应用也非常广泛,例如:机械类产品的裂纹自动识别检测。

22  语音/语义识别

利用特征提取技术、模式匹配准则及模型训练技术,语音识别能够让机器对采集到的语音信息进行识别和理解,转化为文本或命令。例如在军事上,可通过语音识别确认说话人的身份、侦听情报内容、或下发 *** 作指令,具有非常重要的价值。目前,针对中小词汇量非特定人的语音识别系统识别精度已超过98%,针对特定人的识别精度甚至更高。

23  自然语言处理

语言是人类区别其他动物的本质特性,因此理解语言也是人工智能的一个核心方向。综合语言学、计算机科学、数学等多种科学,自然语言处理研究能实现人与计算机之间有效通信的各种理论和方法,以一种智能高效的方式,对文本数据进行系统化分析、理解与信息提取。通过使用自然语言处理技术,可以管理大块的文本数据,或执行大量的自动化任务,并且解决如自动摘要,机器翻译,命名实体识别,关系提取等语言相关任务[2]。

24  无人驾驶

无人驾驶的核心技术是即时空间建模和人工智能技术。低成本高效率的感知解决方案是无人驾驶的基础,高精度底图的建立是无人驾驶的关键,具有深度学习的算法芯片是无人驾驶的核心。在过去六年内,谷歌无人驾驶汽车在公路上安全行驶220多万公里,仅发生17起交通以外,而且均是由人类失误引发的。

25  智能机器人

智能机器人融合了几乎所有人工智能分支技术,它至少需要具备感觉要素、反应要素和思考要素。它能够理解人类语言,感知、分析周围环境信息并调整自己的动作。目前已发展出多样化的机器人种类,从智能水平较低的工业机器人,到智能陪护机器人再到高级智能机器人。

3  人工智能在中国航天上的应用前景

31  更自主的任务规划

航天飞行任务规划是一个典型的知识处理过程,其中涉及较为复杂的逻辑推理和众多的约束条件,这种问题适合采用人工智能的方式加以解决,实现“人工智能+”。

311 “人工智能+运载火箭”——高容错飞行

运载火箭的飞行入轨面临的是一个地面难以复制和仿真等效的全新环境,飞行阶段程序转弯、发动机关机、级间分离、再次点火、姿态修正、载荷分离诸多环节中数百个零部件任一失效偏差都可能给火箭带来不可挽回的损失,是运载火箭成败与否的核心一环。高机动性、短飞行周期、恶劣环境都意味着人无法有效干预,因此,发动机推力下降、姿控极性接反均直接造成了任务失败,飞行风险居高不下。

目前的箭载计算机大多不具备重新规划飞行任务的能力,或需要地面人工计算制导诸元后,通过测量系统进行了上行注入,一定程度上实现d道的重规划,将卫星送入轨道[3]。

未来,将运载火箭设计阶段梳理的飞行过程故障模式与传感器参数相结合,研究基于人工智能的运载火箭飞行阶段故障自诊断以及深度学习训练方法,在分秒必争的运载火箭飞行段完成故障预测、故障定位与故障隔离工作,并通过轨迹d道重规划、制导姿控模型重生成,有效隔离局部故障,规避失败风险,最优化飞行轨迹与姿态控制,有效挖掘潜在运力资源[4]。

除此之外,在运载火箭发动机关机、级间分离后,分离的舱部段通过自主感知和自主控制技术,与卫星定位信息、地形布局信息动态匹配,通过发动机再次点火,实现舱部段自主飞行、平稳下落、精准落地以及主动防护,通过舱部段及各级发动机的回收再利用,显著压缩运载火箭任务周期,降低运载火箭制造成本。

312 “人工智能+深空探测器”——自主规划

现有行星探测器的主要前进方式为:拍摄前方照片通过遥测发回地面站, *** 作人员根据图像确定前进路线,再通过上行通道上注行动指令,实现探测车的行驶 *** 作。这种模式过于依赖地面测试人员,效率较低,很多时候由于行星表面环境较为恶劣,或者由于距离的确过于遥远,遥测控制信号也比较微弱,或者由于地球自转引起相对位置改变,无法实现遥测遥控,更难以实现探测器的实时控制。基于人工智能、视觉计算、监控装置的自动驾驶将大幅提高探测、地形勘测的效率。根据视频摄像头、雷达传感器以及激光测距器来了解周围的地形状况,利用图像识别等智能感知技术、智能决策和智能控制技术可以实现行星探测车的自主行动,选取最优探测路线,智能避开障碍物体,以最小的代价、最高的效率采集有用信息,大大辅助深空探测应用。

深空探测应用中,复杂航天器是由大量元器件和软件组成,长期的在轨运行,元器件的故障和软件的不完善在所难免,由于太空环境的特殊性,当某部分损坏时,难以通过人员进入太空进行判别和修复,利用人工智能技术结合空间高精度、高灵敏度机械臂,通过智能分析航天器数据,实现故障的自主定位、自动识别和在轨自主修复,在轨 *** 作、组装、拆卸、管理。

313 “人工智能+武器装备”——智能作战

通过多维度侦查探测系统,智能感知、发现、定位、跟踪敌方动态、电磁频谱信息、作战行动等战场态势信息,以最少的人员、更少的代价、最大化地获取战场情报数据,辅助智能判别与智能决策应用。如利用覆盖红外、可见光、微波雷达等多种技术手段,实现一体化、集成化的多模融合探测装置,智能感知多维度、多层次、多类型数据,然后应用数据配准、智能去噪等预处理手段获取高质量多源数据,再利用深度学习、模糊推理、专家系统等智能技术,建立目标识别和威胁判别模型,实现武器装备作战环境中目标智能探测感知和识别。

通过给武器装备各类传感器、探测器,智能探测感知飞行空间信息、拦截d信息等,数据传输给d载智能“大脑”,设定相应的优化准则、目标等,通过数据分析,智能自主决策,规划调整飞行d道,通过动力学气动调整,改变飞行轨迹,增强突防性能[5]。

人工智能使无人机个体具备较高的智能水平,协同作战能力显著提高,从而形成低成本的无人机蜂群战术。目前,以美国国防高级研究计划局(DARPA)为首的众多机构,都投入了大量经费就无人机集群在空中的协同作战理论和技术展开研究,包括无人机的快速编队、多机间通信协同,自主战术决策与下达作战命令等,构建多无人飞行器的任务自组织系统分布式体系结构。

32  更高效的地面测试

运载火箭的测试发射同样是一个多学科交叉,多专业耦合的复杂系统工程,是运载火箭成败与否的关键一环。状态准备、测试 *** 作、预案决策、数据判读,每一环都是技术能力的保障,都是知识经验的考验,同样每一步都离不开人的参与,成败维系在每一名人员身上,高水平人员的稀缺造成测试发射无法多任务并举,以及连续疲劳带来的风险造成测试发射周期无法进一步压缩,通过应用人工智能技术,可显著提升测试效率,降低发射成本[6]。

321 采集层

通过多样化的手段代替传统的传感器采集或人工直接观测,基于视频语音识别技术的应用可以大大减少火箭本身测点的布置。例如:发动机工作状态,可以通过对其工作时的声音进行频谱分析;一些机构的动作,可以通过非接触的摄像机直接观察;仪器仪表的指示灯状态监控,可以通过摄像头摄录信息,之后在后台用图像识别的方式的进行自动判断。

322 处理层

人工智能技术极大的提升了设备的数据处理与故障诊断的能力。对地面测试数据进行统一管理和应用,除了完成流程自闭环的反馈判断,还能够对数据的趋势、关联进行综合分析,设备不但可以掌握自身的运行状态,实现故障检测与隔离,启用合适的故障预案,还能够想设计 *** 作人员提供辅助决策和任务规划建议。

323 执行层

前端无人值守是未来火箭发展的必然趋势。电测过程中的脱查脱拔等人为 *** 作、异常故障时的抢险 *** 作,可以采用带视觉定位系统的机械臂来完成。此外,后端的人机交互也可以加入语音识别、手势感知等新型指挥手段,提高测试效率。

33  更全面的设计保障

331 智能设计

引入人工智能技术,可以将目前的半智能化计算机辅助设计系统升级为智能化计算机辅助设计系统,整合现有的海量资料及资源,模拟人脑思考的过程,彻底解决上述三类问题。采用人工智能技术的“航天大脑”可以根据型号需求提供总体文件的初稿,总体设计师进行决策修改后,“航天大脑”将系统需要的文件自动下发至系统级,并形成系统级文件的初稿,系统设计师进行决策修改后,“航天大脑”再将单机需要的文件下发至单机。在进行具体设计时,设计师仅需将设计输入文件提交至“航天大脑”,系统则会根据需求以及所学习的设计文件完成设计工作。如设计电缆网图时,设计师仅需将电缆的几何尺寸、点位定义等提交至“航天大脑”,“航天大脑”会自动绘制出电缆网图的模板,并自动给出诸如线缆型号推荐、连接器型号推荐等辅助决策信息,设计师将不需逐个翻阅厂家的手册即可完成设计,设计效率将大大提高。此外,由于“航天大脑”能够在很短的时间内完成大量文件的学习工作,并从中找出最优方案,设计的标准化和设计水平也能够得到保证。

332 智能制造

智能制造是一种由智能机器和人类专家共同组成的人机一体化智研制造系统,通过人与智能机器的合作共事,扩大、延伸和部分地取代人类专家在制造过程中的脑力劳动。它把制造自动化的概念更新,扩展到柔性化、智能化和高度集成化。

利用大数据技术,对于运载火箭制造装配需要的物资、工具、生产线、场地、工装、人员、运输车辆都统一进行编码采集与实时定位管理,将散布在全国各地的运载火箭制造装配资源条件,进行投筹管理,真正做到全国一盘棋。并与运载火箭发射任务计划有机对接,通过态势分析与智能预测,实现生产规模进度的最优化预测管理,成本进度最优化,并能够实现突发风险的动态应变处置,实现成本最优化管理。

在生产过程中,也完成了对火箭全生命周期信息的收集与保障。建立火箭的综合档案履历资料库,收集制造、装配、测试各个过程的数据与知识,构建大数据分析中心,作为智慧火箭的数据支撑与健康诊断的依据,降低设计和研制成本、提升测发效率、提升火箭的可靠性[7]。

333 远程支持

随着在运载火箭高密度发射、零窗口点火变得常态化,靠大量人力在靶场保障发射任务的模式已难以适应未来的发展需求。发射中心将从逐步从靶场向远程后方迁移,以日本epsilon火箭为例,科研人员远程使用两台笔记本就可实现火箭发射控制。

远程支持中心能够统一接收、存储各靶场各型号发回的测试数据并存储,并通过智能搜索引擎随时搜索查看关心的数据及相关文档;针对当发测试数据,结合历史数据进行大数据分析,提前识别出可能有质量隐患的关键节点;当靶场出现故障时,远程支持中心通过多媒体、虚拟现实等手段开展协同排故工作。

4  中国航天发展人工智能的对策建议

41  聚焦航天 “大脑”技术体系,做好战略规划和顶层设计

基于对大数据与人工智能的探索和积累,提出以技术-产品-服务为核心的航天“大脑”,其技术体系设想如图1所示。

图1航天“大脑”技术体系

411 技术层

智能感知是为机器装上触觉、视觉、听觉、神经和运动机构等智能硬件,使其具备感知世界的能力。通过集群和虚拟化技术实现对海量数据的快速预处理、分布式存储、并行计算等,为智慧大脑提供强大的记忆”和“计算”能力。

412 产品层

智慧产品包括智慧院所、智慧火箭、智慧装备和智慧民用产业。其中,智慧院所是所有智慧产品研制的基础,其可以充分激发员工创新创业热情,并为员工提供高效便捷的管理方式;智慧火箭指的是为火箭装上“触觉”和“大脑”,降低测发控对人的依赖,提升火箭可靠性;智慧装备指的是通过全寿命周期的健康管理,实现装备自主保障;智慧民用产业指的是通过军民融合方式,将军用技术转向民用领域,如智能健康监测、智慧家电远程测控、智慧照明、智慧安防等领域。

413 服务层

未来应全力推动大数据人工智能等技术与航天装备的结合,实现装备信息智能采集、远程保障、智能决策的完美集成,发展模式也将由提供产品向提供全方位解决方案的服务转变。

42  打造航天“大脑”系列产品,快速形成专业的能力和队伍

421 智慧院所

以创新为驱动、以信息化为基础、以知识为载体,利用智能科学理论、技术、方法和信息及自动化技术工具,充分有效地整合和优化利用各类内外部资源,保证能够持续创新,不断开发新产品、新服务,为航天单位的发展提供智能决策。

422 数据银行

建立航天大数据中心,成立“航天数据银行”,对产品研制、生产等多环节的数据进行统一管控、统一挖掘,实现数据挖掘效果的最大化,创造服务价值。智慧管理通过实现产品全寿命周期的统一管控,建立基于数据信息驱动的智能化研制模式,提升工作效率。智慧决策基于大数据技术,将先进管理理念、业务流程和管理模式等融合,实现管理信息化和智能化,达到“降本增效”的目的。

423 智能装备

通过大数据与互联网等高新技术,实现火箭的高度信息化与智能化。包括智慧的远程发射支持平台,智慧的测发指控平台,智慧的全寿命周期综合保障平台。智慧的远程发射支持平台通过大数据技术,训练后方的智能机器大脑,提升异地协同保障能力,减免专家到一线协助排故,解决问题。智慧的测发指控平台依托于语音识别、图像识别、大数据等技术,实现自主的测发指控过程。智慧的全寿命周期综合保障平台利用大数据技术保障数据统一化规范,完成自主健康评估、精准的寿命预测和数据驱动的视情维修[8]。

424 智慧产业

依托剩余载荷和末级监控,实现对地观测等服务,依托远程测控、健康监测、大数据、新一代信息应用技术,通过融合智慧城市中的多源数据,在智慧城市和智慧产业中,提升城市的精细化管理水平,同时为航天单位军民融合开拓增收,锻炼队伍。

43  分布落地执行,拓展航天“大脑”的服务

未来,应全力推动大数据人工智能等技术与航天装备的结合,实现装备信息智能采集、远程保障、智能决策的完美集成,航天企业的发展模式也将由提供产品向提供全方位解决方案的服务转变,如智慧的发射服务、全面的体系作战服务和智慧的军民融合服务。智慧发射最终要实现输入一个指定的位置坐标,为其精准、快速、智能、高效、低廉地发射到指定地点。全面的体系作战服务基于大数据和人工智能技术,能够实现装备的自主保障、战时智能决策和一体化的体系作战。智慧的军民融合服务结合现有的技术和民用产业,开展更多的智慧产业服务,通过信息和通信技术的应用,提升城市的管理水平,提高市民的生活质量,令城市运行和市民生活更加智能。

参考文献:

[1]夏定纯, 徐 涛 人工智能技术与方法[M]华中科技大学出版社, 2004

[2]张 妮, 徐文尚, 王文文 人工智能技术发展及应用研究综述[J] 煤矿机械, 2009, 30(2):4-7

[3]沈林城, 关世义 开放式飞行任务规划方法[J]宇航学报, 1998, 19(2):13-18

[4]席 政 人工智能在航天飞行任务规划中的应用研究[J] 航空学报, 2007, 28 (4) :791-795

[5]张 克, 邵长胜, 强文义 基于面向Agent技术的任务规划系统研究[J] 高技术通讯, 2002, 12(5):82-86

[6]鲁 宇 中国运载火箭技术发展 [J] 宇航总体技术, 2017(3):5-12

[7]郭凤英, 何洪庆 人工智能技术在航天领域的应用[J] 中国航天, 1996(6):19-21

[8]谭 勇, 王 伟 智能故障诊断技术及发展[J]飞航导d, 2009(7):35-38

Application and Prospect of Artificial Intelligence in China Aerospace

Yue MengYun, Wang Wei, Zhang Xige

(Beijing Institute of Aerospace SystemEngineering, Beijing 100076,China)

Abstract : With the breakthrough of technology such asnetworking, massively parallel computing, big data and deep learningalgorithms, Artificial Intelligence has achieved rapid development in recentyears, exciting prospects for development in image identification, voicerecognition, Natural Language Processing(NLP), self-driving, thus got theattention and support from governments of the world This paper combinesartificial intelligence technology with space applications such as rockets,deep-space detector and weapon equipment, then describes its applicationprospect in space Mission Planning, Ground Testing, Integrated Support, etcAnd puts forward relevant countermeasures and suggestions on the subsequentdevelopment of AI technology in China Aerospace

Keywords : Artificial Intelligence; Big Data; China Aerospace

收稿日期:2019-02-18;修回日期:2019-02-26。

作者简介:岳梦云(1988-),女,安徽合肥人,硕士,工程师,主要从事运载火箭与导d的地面测发控系统设计方向的研究。

文章编号:1671-4598 ( 2019 ) 06-0001-04

DOI : 1016526 / jcnki11-4762 / tp201906001

中图分类号:TP18

文献标识码:A

楼上一些回答太形而上学了,都是理论,简单的事情整复杂了,非常容易把人往沟里带。
本人从事物联网专业(说实话做了不少产品,但目前OSI七层协议都背不全),分享下自己的答案,希望能给题主一些帮助。
物联网其实是互联网的一个延伸,互联网的终端是计算机(PC、服务器),我们运行的所有程序,无非都是计算机和网络中的数据处理和数据传输,除了计算机外,没有涉及任何其他的终端(硬件)。
物联网的本质还是互联网,只不过终端不再是计算机(PC、服务器),而是嵌入式计算机系统及其配套的传感器。这是计算机科技发展的必然结果,为人类服务的计算机呈现出各种形态,如穿戴设备、环境监控设备、虚拟现实设备等等。只要有硬件或产品连上网,发生数据交互,就叫物联网。
不过物联网的概念目前被炒到过热。鄙人大概十年前开始学习嵌入式,那个时候还没物联网、智能硬件这么高大上的字眼。相信很多前辈那时跟我一样,学的是单片机编程,大家都用“单片机”来概括这个行业。大概2012年左右,很多热钱从房市涌出,投入资本市场。正是这个时候,一大波高大上词汇来袭。服务器技术叫“云”,单片机叫“智能硬件”,网络单片机应用叫“物联网”,车载单片机应用叫“车联网”。。。呵呵。这种现象是商业进展的必要性,我们搞技术的只能跟着改头换脸,谁叫发薪水的是老板呢,呵呵。
不过受限于技术上的瓶颈,物联网的发展,其实无法像当初互联网那样爆发。或者换通俗一点的说法,大家有没有发现很多物联网的应用,其实是锦上添花的东西,需求性并没有那么强,这也就是为什么很多智能硬件卖得并不是很好的根本原因;正是因为需求性原因,所以商业上也不会出现滴滴打车那样的持续性投入,又一定钳制了技术的进一步发展。
到今年,这一波的投资热潮冷却了很多,但是在这波浪潮里,我们的社会还是发生了很多变化。首先是关注物联网的人越来越多,从业者也越来越多。而且很多大学也开设了相关课程,政府也出台了行业鼓励政策。前面我们说过物联网的概念被炒得有点过热,所以在物联网的大群体里,有两类人最为迷茫。其一就是专注物联网的创业者,其二就是物联网专业的学生。鄙人也曾经属于第一类人。
物联网的技术前景是广阔的,近些年上市的一些空气净化器产品,穿戴设备,家庭环境监控设备,在过去是不曾有的,在目前的消费背景下,正服务着大众。未来还会有更多的新式设备出现,这些正是物联网技术发展的必然结果,所以投身于物联网的技术研发,是很有前景的一件事。
然而物联网的商业前景却是复杂的,特别是对于创业者而言,这不是一个好消息。既然创业,目的肯定是赚钱,然而放眼人类社会,最赚钱的事情,其实归类起来就那么几样。首先是资源、再就是获取资源的工具,以及信息。每个企业,想要活得好,目标只有一个,就是垄断。然而社会上的大部分资源,都是垄断在大企业手里,小企业参与的,往往是跟民生有关的门槛低的行业,竞争激烈,赚钱辛苦。回到计算机行业,虽然计算机行业开放程度很高,然而垄断的存在并不亚于其他行业。英特尔、ARM等公司,基本垄断了处理器行业。微软、Google(Android)、苹果垄断了 *** 作系统。物联网是新兴市场,虽然目前容量不大,但各家各户都盯着,对于创业者而言,无法创造垄断,很难存活。创业者大部分都是小公司,你无论多么牛逼的技术,一旦有市场,大公司都可以迅速投入数倍于你的资金,在非常短的时间内模仿你,超过你,压垮你。你是小公司,宣传推广,也不可能投入像大公司那样的资金及影响力,所以产品再好,也不一定卖得好,这是每个技术型创业者,不得不面对的事实。
正是因为上述压力,很多创业者非常迷茫。本人过去四年间一直从事物联网行业,因此结识了很多同行,其中大部分都是创业者。这些创业者非常勤奋,对自己的想法充满热情,也往往敢于坚持。然而这些并没有什么用,大部分创业者,都没有走到今天,因为投资人的钱总是会烧完的。
我觉得想走向成功,物联网行业的创业者应该处理好两个问题。首先,应该认识到,计算机行业想突破垄断,对于大企业而言,是技术积累。然而对于个人或小团队而言,唯一的方法是缩小用户群体。就是我们应该专注于一个领域一项技术去解决一个问题。如果你说你的客户是大众每一个人,那你的东西基本一个都卖不出去。但是如果你的客户是“捷达轿车车主”+“装过电子导航系统”,那你的东西会比较好卖。缩小用户群体的好处,是大企业不会来跟你抢饭吃,而你又非常容易精准的找到你的客户并说服他们买你的东西。其次,个人或小团队,不应该有任何一刻在亏本,否则你终会难以坚持。最好的状态,应该是大家都有正职工作(收入),但是比较闲,一起来维护一款小产品,这样的情形,往往容易成功(最后团队或项目被大公司收购,实现财务自由,或职位上升)。
对于在大企业进行物联网方向研发的人员,自然不用担心收入问题,然而可能大部分时间,都要接受来自上层的任务分配。作为物联网技术从业者,我们应该认识到,这个行业的技术,还是有很多方面需要突破的,个人将一些觉得需要突破的技术陈列如下,希望在物联网方向的研发人员,可以在闲暇之余,做一下这么几方面的技术积累:
1目前国内低功耗网络技术都做得不好,包括zigbee,其实也被过分夸大宣传。
2传感器和传感输入部分,其实有很大的空间,人之所以聪明,跟手、眼、口、鼻、耳有很大关系,然而计算机的手眼口鼻耳,没一项可以跟人比。由于个人很难在芯片技术上积累,所以只能做做算法,对于视觉识别技术,各个领域,都有非常大的潜力,可以研究积累。
3降低研发难度的工具,可以关注下,目前物联网还属于教学推广阶段,能够快速帮助从业者提高研发效率的工具,可以研究积累。(鄙人正是做这一块)
4特定环境下的语音对话算法,可以研究下。目前所有的语音识别,几乎都不过是语音转文字而已,然后计算机通过词汇分析来执行任务,基本都做不了上下文对话。非特定环境下的语音对话,估计国外的苹果、google,国内的讯飞、腾讯、百度都在研究,个人技术者基本没有必要也没有机会。不过在特定环境下(比如自动导航这个环境,人的指令,只会围绕“导航”这个主题),语音对话是非常有效率的输入输出工具,值得个人研究积累。
说完创业者,再来说说各大高校的物联网专业的学习者。
其实我个人是不建议在本科搞物联网专业的,因为物联网专业不是基础学科,在本科开设,没能力的学校,也就是一个幌子,会坑不少人。有点能力的学校,也无法指望在当前的教学构架下,能让学生学到点什么。其原因就是,物联网涵盖的内容太多,随便列举列举:
1数电模电、单片机编程技术:要做物联网产品,起码,你能看得懂电路板吧,你得能给单片机写几行代码,点个流水灯什么的吧。要知道,这过去是放到自动化专业四年要学的东西啊。电路板画得好,就算在内陆省会城市,月薪也随便上万的啊,单片机写得好,月薪也一样上万的啊。打什么物联网的幌子啊!
2网络技术:光给单片机编单机程序还不行,你还得能让单片机上网吧,否则叫什么物联网。既然上网,最简单的“客户端-服务器”模型,你好歹得在云端放个服务器吧。且不说服务器程序你要自己写,到阿里云买个服务器,绑定个域名,估计你都得折腾一个礼拜。写服务器程序,那在本科也是一门专业啊,起码VC要学吧(时髦点学java)。你即会上位机,又会单片机,那你是全栈工程师啊,这工资不是更高?
3无线技术:很多产品,光一个单片机还不行,你还得整多个单片机,然后多个单片机互相整个网络,这就涉及到组网。用wifi,功耗太高。用zigbee,光协议就看死你。用蓝牙,人家构架就没这么整过。那只好自己写吧,从驱动到组网协议,你要能写全,还不出问题,那以后还有什么软件构架你整不了啊?
4传感器技术:就目前而言吧,很多传感器都是数字型的,直接丢数值出来,单片机只需连上去就可以用,难到不难。但问题是量多,测温度吧,有温度传感器;测光照吧,有光照传感器;测空气吧,有空气质量传感器;还有加速度传感器、心率传感器、颜色传感器、分贝传感器。。。大学也就四年,学单片机编程估计都要三年,你看你剩下的时间能整几个吧。
5终端技术(App):物联网物联网,你把用户搁哪啊,总要给用户丢个App来看看产品状态吧,那就得学习App怎么做。iOS和Android你还得都学了,不然用户就得减少一半,呵呵。
所以本科开设的物联网专业真的是坑啊,明摆着学校不可能教全的嘛,就算学校愿意教,学生也学不过来啊。给点可行性建议吧:
1明确正确的技术观,物联网是一个行业,而不是一个专业。学好物联网里任何一项技术,都可以独当一面,迅速实现个人价值积累(收入很赞的哦)。如果贪多贪快,除了给自己带来无尽的失望和打击,没什么好处。
2明确正确的发展方向,物联网涉及软硬件、互联网、App等多个领域,作为个人而言,只可能精其一样。如果是做硬件,那就好好学数电模电、应用电路、布线画板、传感器特性等等。如果是做软件,明确方向,一般建议本科阶段学好单片机编程、熟悉一两种传感器或应用,做一两款小产品即可。毕业后,可逐步过渡,学会和其他工程师配合,学会组网应用,多出作品练手。
3实践大于理论,学物联网或者嵌入式一定要勤上手,多出作品。多出作品,不仅可以增长技术能力、了解物联网构架,最重要的是可以提高自信心。人与人的区别,大部分都在教育,而教育成功与否,自信是非常重要的评估法则。当然,由于物联网一般都是系统产品,建议学习者可以基于成熟的构架去做产品,这样容易成功做出完整产品。可以用我们酷享物联系统,也是选择之一。
4毕业后,尽量不要去初创公司,不过初创公司也很少招应届生。一定要去中型企业或大企业的核心团队,哪怕打杂都行。无论未来是打算做市场还是做技术,一定要记得毕业招工作的时候,要想办法进企业的核心研发团队,大公司进不了,就进小一点的,再进不了,就再小一点。可能有人会问,人家不一定要我啊。对,人家不一定要你,你本科期间作出的物联网作品,就是敲门砖。
5就业后,不要急于成功,闷下心思,跟着团队技术带头人做技术。有什么做什么,尽多培养不同领域的应用,多结实靠谱的技术朋友。三五年后,某一天,你会发现你自己有技术、有团队,可以做任何产品的时候,你的路也会宽阔起来。
------------------------------------------------------------------------------------------------------
好了,广告时间到了,来说说我这两年从事的项目:
酷享物联系统,是开源、开放的物联网系统,以主机+设备的方式,原生支持常见家电控制,提供可以嵌入到设备里的无线物联模块(万纳模块)给研发者,研发者可以基于万纳模块,快速实现自己的Idea。万纳模块8个IO无需编程,就可以被配置为数字输入输出、按键、模拟采样(ADC),PWM等各种方式,极大的降低了设备的接入门槛。
由于酷享物联系统是开源系统,学习者使用酷享系统学习物联网构架的同时,还可以看到酷享物联系统的实现代码,以及诸多应用案例,以最高的效率,提升自己对物联网的理解。
案例:
植物栽培助手(不编程案例)
双向开关、智能插座(不编程案例)
情景面板(不编程案例)
LED调光器(不编程案例)
空气质量监测仪(开源案例)
补充:(2016420)
本来不想上照片的,有评论说我做的这几个作品根本没有联网,那我就发几张照片出来打脸,呵呵。
请问?系统中所有设备,都可以通过app远程联网查看,控制,怎么不是物联网????????????????
请问?系统中所有设备,可以脱离手机,通过网络互为关联,互相触发,怎么不是物联网?????????????????
对,说的就是你,让我看论文的那位!!!!!!!!!!!!!
好了,希望诸多物联网从业者也好,初学者也好,都能戒骄戒躁,努力积累,实现中国梦!哈哈哈哈

近年来,随着科学技术的不断进步,互联网已经开始我们生活中各个地方,让我们的生活变得更加智能化与简单化。其中UIOT超级智慧家是上海紫光乐联物联网科技有限公司研发销售的新一代全屋无线智能家居系统品牌,那么UIOT超级智慧家好用吗, UIOT超级智慧家 有什么功能呢,下密码温暖就来给大家介绍下吧。

UIOT超级智慧家好用吗

UIOT超级智慧家还是非常好用的,它是通过物联网、云计算、语音识别、AI技术,连接家庭电工产品、暖通舒适设备、安全和影音等系统,构建互联互通的家庭物联网,并成功入选国家新型信消费项目,致力于带给我们一个舒适智能化的生活空间。

UIOT超级智慧家有什么功能

1、智能窗户解决方案

在夏天,天气炎热,炙热的阳光或是嘈杂的声会人们休息造成一定影响,但过多紫外线照射则会对人们身体造成不适。而UIOT超级智慧家智能家居拥有一键午休模式,可帮助您自动开启 空调 ,关闭 窗帘 ,让人们有个舒适高质量的生活空间。

2、智能照明

UIOT超级智慧家拥有智能照明功能。回家时,可一键打开全屋灯光,让我们省时省力,离家时有能一键切断所有照明设备的电源,省时放心。除此之外。当我们,入睡的时候,可开启睡眠场景,让我们不用下床就能关闭全屋灯光,非常方便温馨。

3、煤气监测与智能控制

UIOT超级智慧家还拥有煤气监测与智能控制功能,当老人离开厨房过久的时候,系统会将煤气阀门自动关闭,而当煤气发生泄漏时,系统还会动关闭阀门保护老人安全。

4、远程视频交流

UIOT超级智慧家还拥有远程视频交流功能,可同手机随身查看家里老人小孩的具体情况,保障人们的安全,同时还能随时随地与子女互动交流,只需一键 *** 作,非常简单方便。

以上就是关于UIOT超级智慧家好用吗以及UIOT超级智慧家有什么功能的相关介绍,希望能够给那些想要安装智能家居的人们提供些帮助,让大家有个舒适智能的生活空间。

智能家居集成是利用综合布线技术、网络通信技术、安全防范技术、自动控制技术、音视频技术将家居生活有关的设备集成。由于智能家居采用的技术标准与协议的不同,大多数智能家居系统都采用综合布线方式,但少数系统可能并不采用综合布线技术,如电力载波,不论哪一种情况,都一定有对应的网络通信技术来完成所需的信号传输任务,因此网络通信技术是智能家居集成中关键的技术之一。安全防范技术是智能家居系统中必不可少的技术,在小区及户内可视对讲、家庭监控、家庭防盗报警、与家庭有关的小区一卡通等领域都有广泛应用。自动控制技术是智能家居系统中必不可少的技术,广泛应用在智能家居控制中心、 智能家居主机家居设备自动控制模块中,对于家庭能源的科学管理、家庭设备的日程管理都有十分重要的作用。音视频技术是实现家庭环境舒适性、艺术性的重要技术,体现在音视频集中分配、背景音乐、家庭影院等方面。
又称智能住宅。通俗地说,它是融合了自动化控制系统、计算机网络系统和网络通讯技术于一体的网络化智能化的家居控制系统。智能家居将让用户有更方便的手段来管理家庭设备,比如,通过家触摸屏、无线遥控器、电话、互联网或者语音识别控制家用设备,更可以执行场景 *** 作,使多个设备形成联动;另一方面,智能家居内的各种设备相互间可以通讯,不需要用户指挥也能根据不同的状态互动运行,从而给用户带来最大程度的高效、便利、舒适与安全。

物联网(The Internet of Things,简称IOT)是指通过 各种信息传感器、射频识别技术、全球定位系统、红外感应器、激光扫描器等各种装置与技术,实时采集任何需要监控、 连接、互动的物体或过程,采集其声、光、热、电、力学、化 学、生物、位置等各种需要的信息,通过各类可能的网络接入,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。物联网是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络。
物联网( IoT ,Internet of things )即“万物相连的互联网”,是互联网基础上的延伸和扩展的网络,将各种信息传感设备与互联网结合起来而形成的一个巨大网络,实现在任何时间、任何地点,人、机、物的互联互通[2] 。
物联网是新一代信息技术的重要组成部分,IT行业又叫:泛互联,意指物物相连,万物万联。由此,“物联网就是物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。因此,物联网的定义是通过射频识别、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网相连接,进行信息交换和通信,以实现对物品的智能化识别、定位、跟踪、监控和管理的一种网络。
物联网的基本特征从通信对象和过程来看,物与物、人与物之间的信息交互是物联网的核心。物联网的基本特征可概括为整体感知、可靠传输和智能处理[5] 。
整体感知—可以利用射频识别、二维码、智能传感器等感知设备感知获取物体的各类信息。
可靠传输—通过对互联网、无线网络的融合,将物体的信息实时、准确地传送,以便信息交流、分享。
智能处理—使用各种智能技术,对感知和传送到的数据、信息进行分析处理,实现监测与控制的智能化。根据物联网的以上特征,结合信息科学的观点,围绕信息的流动过程,可以归纳出物联网处理信息的功能:
(1)获取信息的功能。主要是信息的感知、识别,信息的感知是指对事物属性状态及其变化方式的知觉和敏感;信息的识别指能把所感受到的事物状态用一定方式表示出来。(2)传送信息的功能。主要是信息发送、传输、接收等环节,最后把获取的事物状态信息及其变化的方式从时间(或空间)上的一点传送到另一点的任务,这就是常说的通信过程。(3)处理信息的功能。是指信息的加工过程,利用已有的信息或感知的信息产生新的信息,实际是制定决策的过程。(4)施效信息的功能。指信息最终发挥效用的过程,有很多的表现形式,比较重要的是通过调节对象事物的状态及其变换方式,始终使对象处于预先设计的状态
希望我能帮助你解疑释惑。

1 无处不在的数据分析
越来越多的企业在利用从他们客户那里收集到的大数据更好地了解客户需求,并且优化产品使其能更好地服务客户。这就是无处不在的数据分析,它更看重数据的质量,而非数量。将数据最大化地转变为有价值的创新,利用数据洞悉市场,以此为基础做出明智的商业判断。
如果关注数据质量,将收集到的所有信息进行筛选就变得至关重要。例如人工智能,其需要迅速地完成一系列动作:数据收集、分析,并且瞬间作出判断采取行动。严格来讲,对数据质量的关注需要嵌入到数据采集的过程中。在这样的数据分析背后也要关注消费者信息的私密性。GfK2015年进行的针对全球20个地区的消费者研究结果表明,全世界消费者都在担心他们的数据是怎样被收集、售卖和利用的。
2 虚拟现实(VR)
2016年,从行业到消费者,从硬件到软件,关于虚拟现实,一切都处在被普及教育的阶段。随着三大巨头接连推出消费级产品,且“售罄”之讯频传,虚拟现实作为最受关注的新智能领域迅速席卷全球。全球VR头显市场规模预计在2020年会达到28亿美元,其中供游戏者使用的VR头显设备占据多数份额。中国市场2016年全年零售量会达到300万台左右,从GfK监测的VR头显在线市场来看,从2016年1月到4月,VR头显零售量几乎翻了20倍,虚拟现实硬件产品正在经历一场初期爆发式的增长。但目前依然是以VR盒子为主。整体来看,中国的VR市场现在还处于野蛮生长的阶段。相信在未来VR应用会逐步向直播、旅游培训、医疗、装修、房地产、教育等领域渗透。
3 人工智能(AI)
人工智能最终是重现一遍人类思考的过程。作为一个人工制造的机器,终极形态的AI将拥有与我们相同的智力水平:学习、推理、使用语言、构想原始创意。然而只拥有学习能力的AI已经快速地渗透到我们的生活中了。语音识别是目前人工智能中落地较早、目前投入及研发的核心领域之一。基于人工智能,各个厂商可发挥的空间很大,不一样的应用及方向才是真正有趣的地方。2016年,AI助理的发展或许会超越智能手机的发展。人工智能是一块有待探索与开发的市场,这块市场拥有多种可能性。
4 可穿戴产品
智能手表、健康监测手环、相机、GPS定位设备及心率监测设备进入主流市场还需多久尽管万众瞩目的Google Glass及Apple
Watch的发布已经俘获了消费者的想象力,但只有少数消费者接纳了这些设备。中国可穿戴市场2016年销量预计达3160万台,环比2015年上涨32%,但其中以价格较低的手环产品占据市场的大多数,整体市场销量持续上升的同时增速减缓,市场经过了2015年跳跃式发展后开始进入一个更趋理性的阶段。如果可穿戴产品想要吸引更多的消费者,有以下四点需要注意:一是与物联网的融合,把可穿戴设备和现有的个人科技生态相融合将会成为扩大市场的基础性举措。二是设计和材质,外形设计已经成为可穿戴产品跟上时代潮流的一大绊脚石。三是精准有效的信息收集,提高数据的准确性和解读能力是可穿戴厂商正在解决的另一大问题。四是引人注目的新案例,特色鲜明的产品会逐渐与消费者建立特有联系。
5 视频消费
视频消费的发展速度比之前任何人预期的还要快,并且线上已经成了人们观看视频的主要渠道。从社交媒体上的短片到视频网站的**服务和套餐服务,甚至到最近大火的视频直播,消费者似乎可以在任何时间、任何平台看到想看的视频内容。事实上,有人预言到2019年,80%的互联网流量消费将来自于视频观看。而随着投入到这个领域的玩家越来越多,从内容的生产者和发布者到各大品牌、厂商,互相合作会成为一种需求,只有通过这样多方之间的信息互换才能够释放更大的能量。
6 无人机
据GfK中国估算,2014年中国航拍消费级无人机市场为近6亿元,到2018年将激增到60亿元。而民用无人机市场更是有望在未来10年形成千亿元级规模,未来发展空间广阔。
无人机并不算是新产品。无人机在航拍、地形测绘、商业运输以及救援部署,甚至在自动机械化生产上,都可以起到作用,无人机技术在诸多领域所能发挥的用途正在被进一步挖掘出来并且会在降低商业成本、提高商业效率方面起到很好的催化作用。但是在实现这样的美好愿景之前依然有很长的路要走。目前无人机依然面对诸多阻碍,如缺乏“感知-避障”技术、载物重量上的限制、没有夜视功能以及电池续航时间有限等。
7 移动支付
全球移动支付市场比较复杂。目前传统的支付方式在许多成熟市场中都有着强大的根基,无法轻易撼动。相反,一些非洲市场和亚洲发展中国家市场则直接迈入了移动支付时代。在这样一个碎片化的环境中,对于品牌、制造商和零售商来说,理解移动支付当下的全球格局以及它的演变趋势至关重要。在中国,阿里巴巴、腾讯等第三方玩家已经率先鼓励联网用户通过手机在实体店或网店进行支付。小米、OPPO、魅族旗下具备支付功能的手机的使用也意味着在这一市场中,移动支付不仅存在,而且触手可及。而那些被认为将第一时间接受新兴技术的市场则呈现出与上述地区的截然不同的局面。当前,一些市场仍需提高消费者对于移动支付的认知度,而对于另一些市场而言,要做的则是减少移动支付的使用壁垒。
8 智能汽车
随着物联网技术的越发成熟,智能汽车也将应运而生。许多豪华轿车已经配备了大显示屏,并且车载大屏也会继续成为趋势,在2016年底或2017年初,为前排乘客设计的额外显示器也将出现在高档汽车中。为了让乘客更好地体验“增强现实(AR)”技术,一些OEMs甚至想要把显示屏幕延伸到整个挡风玻璃或者侧窗。屏显技术的进步为那些企图走到传统汽车供应商前头去的电子消费厂商和初创企业们打开了大门。过去,受到物联技术的限制,OEMs很难找到一个正确的商业模式,但是现在,机会来了。通过了解细分市场消费者的需求和喜好,量身开发车载APP和配套服务从而获取相应的报酬成为可能。
9 3D打印
3D打印机的销量目前还比较小。但是,随着更多的厂商加入到该领域以及消费者的认知度逐渐提高,这种情况在明年应该可以得到改变。拿德国为例,3D打印机的销量在去年增长了71%,而且需求还在进一步扩大。消费者认为3D打印技术极具吸引力,3D打印在最有可能影响他们生活的科技中排名第三。这比智能汽车、云计算、可穿戴设备还有物联网的排名都要靠前。这表明这项新技术的知识普及在全球已经非常高了。价格一直是新兴科技难以普及的主要障碍。但是随着成本的下降,价格也将不再是阻碍,3D打印技术的优势会变得越加明显和突出:更低的装配成本,减少浪费,极低的运输和配送费用和更快的新产品上市速度。
10 智能家居
一股智能家居的“淘金热”正在各领域中展开,传统厂家、互联网公司、国际技术提供商及零售商等各种组织都在寻求最大限度地参与到未来家居领域中来。根据GfK针对全球7国消费者所作的研究表明:绝大多数消费者(90%)知道智能家居,50%的消费者认为智能家居能改变他们的生活,78%的消费者同意这是一个具有吸引力的理念。目前智能家居想要获得成功的关键是让消费者能明白智能家居技术是如何提升他们的生活品质,并且提供参与度高且有效的用户体验。现在需要行业协作和消费者教育来驱动需求,并推动智能家居从厂商领导发展向消费者需求主导发展的创新转变。行业相关参与者需要合作并组建不同以往的合作关系。这会确保不同的设备和服务能在后台彼此连接来满足对便捷的需求。只有满足了这一点,智能家居的真正价值才能得以体现。根据GfK中国对家电智能化研究,中国家电产品智能化应用发展速度位于世界前列,但目前也处于厂商、零售商等供给方主导的阶段,还处于智能连接、手机远程控制等初级智能向更高级智能功能探索和尝试的阶段。中国庞大的用户基础和互联网业态演变将为智能家居的发展和创新提供良好的土壤,预计智能家居未来将会催生类似BAT级别的新企业。
参考:十大技术全面开启物联网时代>

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13348087.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-19
下一篇 2023-07-19

发表评论

登录后才能评论

评论列表(0条)

保存