那么,在探讨存量工厂智能化转型之前,我们首先要知道几个概念:物联网是什么?工业互联网又是什么?
简单来说,工业互联网由工业物联网和产业互联网组成。
工业物联网是物联网(IoT)在工业场景的应用,可以打通工业“人机物法环测”六大要素。
产业互联网使产业链上下游互联互通。
工业互联网+云计算+大数据处理+人工智能,构成针对工业的综合性技术。
对于单体工厂来说,IoT是变成智能工厂的第一步,只有迈出了这第一步,才能实现数字化、智能化。
阿尔卑斯系统集成(大连)有限公司(简称“ALSI”)为制造业提供多元化智能工厂规划方案。其中,ALSI大连IoT解决方案主要根据制造现场实际情况,完成“人机物法环测”六要素有效数据的自动采集与上传,并进行数据分析与管理。
总体来说,ALSI大连IoT解决方案有五大特点:
1适用范围广。无论是由专用设备组成的产线,还是通用设备,都可以采用。
2具有强大的兼容性。无论一条产线上有多少种不同品牌、型号的设备,都可以统一入网进行全自动数据采集。
3接口完全开放,可与各种管理软件无缝衔接。如MES、PLM、WMS,都可调用ALSI的IoT解决方案采集的数据,也可以通过ALSI直接定制智能产线控制系统,实现现场管理的智能化转型。
4传感器技术先进。ASLI大连的集团公司ALPSALPINE,是世界知名的传感器研发生产企业,品质卓越,技术领先。“稳定”、“安全”是它的特点;“精准”、“可靠”是客户对它的评价。ALSI大连在IoT解决方案中根据应用场景需求选用最适合的传感器,完成向智能工厂转型的坚不可摧“基建”工作。
5成本相对较低、实施难度小。以生产设备智能管理为例,其成本仅为PLC的1/3,加装数采设备时不用停产,而且数采设备可以随时更换,或用于其它设备或产线,自由、方便、灵活。
对于存量工厂而言,一味地追求智能工厂建设不科学,而直接转变为“黑灯工厂”更是不现实的事情,在一定的 历史 时期,我们要考虑智能工厂的目的是什么,或者说,对于存量工厂来说,什么才是“智能工厂”,那一定是落地的、切实可行、将影响降到最小的解决方案,才是其智能化的切入点。
更多智能制造解决方案详见
ALSI大连_精益生产_智能工厂_设备监控系统_阿尔卑斯系统集成(大连)有限公司目前,很多公司正在积极布局智能制造和工业物联网发展战略。问题是,这些企业是会共同推进两个战略的发展还是分开推进呢?我相信他们会共同推进,但我也可以理解那些把他们看作是分开的人。
在我们讨论这个话题之前,先让我先定义一下术语,因为有很多关于这个的争论。
智能制造:在工厂和整个价值链内实现业务、物理和数字流程的智能化、实时协调和优化。基于所有可用的信息,资源和流程将实现自动化、集成化、被监控和持续评估。(根据MESA International ,MES国际联合会定义)
IIoT:在工业(如组件、产品、产品运输和设备)中使用的物理对象(“物”)中嵌入电子、软件、传感器组成的网络,这个网络能够使物理对象通过互联网协议(IP)收集数据并与控制系统、业务流程和分析交换数据。(根据维基百科“IoT”修改)
现在回到我们的核心问题:两个战略是要共同推进还是分开推进呢?很明显,目前还没有定论。下面是这些观点的一些背景:
工业互联网协会(IIC)说:"通过自动化工业设备和系统之间的通信,IIoT提高了整个工厂的效率,使其更加智能化,"我同意。我相信,IIoT是智能制造的一项有利技术,它的进步将推动智能制造的发展。同样,随着智能制造超越概念,进入公司正在执行的项目,制造商和他们的解决方案提供者将改进支持这些项目的IIoT技术。这两个很可能会被共同推进。
另外:并不是每个人都同意。在最近的MESA调查中,超过三分之一的制造商报告说他们不相信智能制造包括IIoT(参见上图)。我明白这个观点,因为智能制造有很多途径。实际上,IIoT可以在一些可能定义智能制造的正常边界之外使用。
与智能制造相比,IIoT确实发展可能会更快,因为解决整个价值链上的项目是一个超出公司内部的挑战。像通用动力公司、通用磨坊和通用汽车这样的大公司可以展示他们的力量,并帮助推动特定行业的智能制造行动,但是IIoT项目可以取得很大的进展,并在公司的内部提供许多好处。如果消费者市场上的物联网计划提高了工厂内部的期望门槛,那么实现类似的互联互通、数据访问、控制和分析能力也会有压力。
此外,生产仍将涉及人员,以及未配备IIoT的设备和产品。对于一些智能制造方案,IIoT没有也不可能是商业案例,这些情景可能关注人员和价值链流程。
推动第四次工业革命的是什么?
有些人会认为智能制造或IIoT可能导致第四次工业革命。我也有一个观点:智能制造是这场革命的基础,而IIoT不是。即使IIoT的发展比智能制造快得多,我也不认为它足以让生产企业进入下一个生产力阶段。
那么IIoT缺少了什么来推动第四次工业革命呢?首先是企业环境。智能制造不仅整合了工厂或智能连接工厂,还包括智能连接的供应链和贯穿产品生命周期的数字线程。与其他工业革命一样,技术的转变--比如IIoT--必须与新的流程和人们工作的方式协同工作,以达到我们在第四次工业革命中所追求的生产力水平的提高。
IIoT是一项基础技术,但它只做它所做的事情--在"事物"之间创建通信,以便更容易地获取数据和分析。第四次工业革命需要许多其他技术和工艺。其中一些将针对一件设备或生产过程;其他人将在工厂、企业或价值网络上工作。
真正让商界人士兴奋的是,当新技术和新方法将它们整合在一起时,就会扰乱市场,并让公司提供新的服务和与新产品所能产生的数字数据绑定的新价值。例如,基于IoT的智能产品可以向工程师和生产者提供关于产品如何在该领域执行的反馈。基于这些数据,我们能提供什么样的新见解和服务?
这就是为什么我认为,要实现第四次工业革命需要更多的时间。它将把IoT和IIoT引入智能制造策略,以创建新的方法来协调和优化整个价值链中的流程,并向客户交付新的服务级别。
——更多本行业研究分析详见前瞻产业研究院《中国物联网行业应用领域市场需求与投资预测分析报告》。
行业进入快速发展期
物联网最早于20世纪90年代被提及并确认概念,在1995年至2005年间经历了萌芽期。2005年,国际电信联盟对物联网的概念进行了拓展,物联网行业进入初步发展期。2009年,中国、欧盟、美国对于物联网都提出国家战略层面的行动计划,全球物联网行业发展进入快速发展阶段。
全球物联网设备数量高速增长
根据全球移动通信系统协会(GSMA)统计数据显示,2010-2020年全球物联网设备数量高速增长,复合增长率达19%;2020年,全球物联网设备连接数量高达126亿个。“万物物联”成为全球网络未来发展的重要方向,据GSMA预测,2025年全球物联网设备(包括蜂窝及非蜂窝)联网数量将达到约246亿个。万物互联成为全球网络未来发展的重要方向。
全球物联网市场规模逐年增长
整体来看,物联网是世界信息产业第三次浪潮。当前,全球物物联网核心技术持续发展,标准体系加快构建,产业体系处于建立和完善过程中。未来几年,全球物联网市场规模将出现快速增长。IDC数据显示,2020年全球物联网市场规模约达136万亿美元。
物联网人才需求攀升,人才供不应求矛盾凸显
物联网产业的迅速发展,使得相关产业人才也备受关注。有调查显示,未来五年,物联网人才需求量将达到1000万人以上。其中,智能交通、车联网市场人才需求约为20万;智能物流、物流于智能仓储方市场人才需求约20万;智能电网、智能于系能源店里产业人才需求将达百万;智能医疗、智能医疗设备支持于技术服务、智能医护管理等人才需求将超百万。总体来看,由于物联网涉及领域广泛,可以在众多的应用领域实现就业,因此,各个应用领域均对物联网人才有一定的需求,物联网人才的职业前景一片向好。但与此同时,全国开设物联网专业的院校有1000多所,每年毕业生规模不足10万人,供不应求态势很明显。
一方面,从BOSS直聘2019年春招人才需求数据可以看到,与物联网相关的嵌入式工程师人才需求同比增速超过46%,同时,光传输工程师和无线射频工程师的需求同比增幅也均超过80%。表明物联网人才紧缺程度高于其他技术职位,市场对该类人才的需求旺盛。
另一方面,从薪酬水平来看,2019年春招旺季,与物联网相关的嵌入式工程师的平均招聘薪酬达到18132元,部分物联网嵌入式工程师的薪资在23万元/月以上,均处于相对较高的水平。而市场愿意给予物联网人才更好的薪资待遇,也与市场上人才相对稀缺密切相关。
此外,在2019年4月3日,我国人力资源社会保障部、市场监管总局、统计局正式向社会发布的13个新职业中,物联网工程技术人员、物联网安装调试员就在其中。预计未来在行业发展带动下,物联网相关人才需求还将日益增长。
具体来看,对于物联网工程技术人员来说,该职业是物联网行业最新诞生的、也是相对热门的一大人才需求。其定义及主要工作任务如下:
而对于物联网安装调试员来说,从2018年8月,支付宝宣布刷脸支付大规模商业化之后,不到一年时间已在全国300多个城市落地,这种连手机都不用掏“靠脸吃饭”的支付方式迅速占领了年轻人的市场。现在无人商店、刷脸支付已经成为未来的趋势,对物联网安装调试员的需求顺势产生。
值得一提的是,在物联网产业中,在与刷脸支付相关的产业链上下游,诞生的研发生产和安装调试人员就已经达到50万,且规模还在不断扩大中。据统计,支付宝刷脸设备、无人货柜的安装调试员平均年薪达到15-20万。而尽管未来物联网产业将蓬勃兴起,但物联网产业人才缺口却较大,尤其需要技能型、应用型人才。未来几年,物联网领域的安装调试员需求量在20万以上,职业前景备受看好。
物联网技术在可循环经济中的应用分析
循环经济在中国发展迅速,并被确定为国家发展战略的重要组成部分。将资源进行有效运用是循环经济的主要内容,“再利用”以及“可控化”是其中的两个原则。下面是我为您整理的物联网技术在可循环经济中的应用分析论文,希望能对您有所帮助。
摘要: 随着全球经济的发展以及科技技术的进步,传统的可循环经济已经跟不上如今社会发展的速度,这就需要与当今的科技进行有效的结合。将物联网技术应用到可循环经济领域,是当前社会发展的必然趋势,而如何将物联网技术科学、合理、高效地应用到可循环经济中是值得深思的问题。本文对循环经济以及物联网技术进行了详细的叙述,并从汽车废弃回收利用的现状出发,以汽车的可循环经济网络为例,具体地论述了在可循环经济下的物联网技术的应用,并对其中物联网技术中的关键技术进行详细概括。
关键词: 可循环经济;物联网技术;应用
随着传感器、信息技术、网络、射频识别RFID、移动计算等技术的飞速发展,物联网技术(TheInternetofThings,IOT)应运而生。物联网概念由美国麻省理工大学KevinAshton教授在1991年首次提出[1]。物联网技术是当前社会的主流应用技术,是对互联网技术的扩展以及革新。继计算机和互联网之后,物联网被认为世界信息技术产业的第三次浪潮。将物联网技术应用到可循环经济领域,使网络技术与社会经济结合是未来社会经济发展的主流趋势。本文以循环经济为主要视角,从物联网技术的应用出发,以汽车行业为例,论述物联网技术在产品的生产、消费、回收的循环过程中的具体应用。
1可循环经济下的物联网技术应用概述
循环经济最早在Boulding的“宇宙飞船经济”中被提及,其具体定义最早由Pearce提出。20世纪末,循环经济的理念被系统地引入中国学术界。循环经济在中国发展迅速,并被确定为国家发展战略的重要组成部分[2]。将资源进行有效运用是循环经济的主要内容,“再利用”以及“可控化”是其中的两个原则。相比较传统的经济模式,可循环经济更加符合我国国情。传统的经济模式让我国的物产资源以及环境承受能力都日渐衰落,而可循环经济模式的兴起给我国经济发展带来了新的曙光。可循环经济不仅是已贯彻落实的基本国策,更是我国建立资源节约型、环境友好型社会的`重要措施。
物联网是一个潜在的内循环系统。从经济学角度来说,循环经济系统是一项系统工程[3]。物联网主要借助射频识别技术(RFID)以及全球定位系统等相关的信息传感设备,借助现代通信技术,将需要进行鉴别的物体同互联网进行连接,从真正意义上对物体进行鉴别、跟踪以及管理等,并且将这些信息传感设备与互联网结合起来,形成巨大的网络[4]。这
样的结合实现了物品与网络的链接,更方便基础设施与互联网交换信息,将智能化更好地带入生活的每个角落,其追踪、识别、定位等都是其具体的体现。物联网技术的基本原理是借助射频识别(RFID)技术,在计算机互联网庞大的平台上实现物品信息的自动采集并达到信息的共享。
在产品的生产完成阶段,产品会贴上储存有EPC编码的电子标签,这个电子标签将会一直跟随该产品整个运行的生命周期,而其标签就如产品标志,可以通过物联网对其进行跟踪查询。在物联网技术运用之前,物理的基础设施是和网络基础设施分别开来的,其物件、建筑物等实体与数据库、计算机并无关联,而物联网技术的运用让这二者有机地结合起来,并且扩展出了一个新的高科技领域。
目前,物联网技术已经充分地运用到了信息产业,包括信息服务、信息软件等方面。此外,物联网技术在工业、农业等领域也有重要的应用。可循环模式下的经济涵盖了生产、售后服务等不同环节,其中除生产环节之外的后续环节为物联网技术应用到可循环经济中提供了可能性。随着我国经济的快速发展,人们对汽车的需求量越来越大。据不完全统计,自2000年起,我们每年几乎以100万辆汽车的速度在增长。
随着时间的推移,我国将迎来回收汽车数量的高峰期,汽车报废后的钢铁、有机金属以及在制造汽车的过程中所使用的新型材料、各种金属合金、橡胶、玻璃和聚合物等化学原料都需要得到合理利用。可见,在汽车失去了商品价值后,自身的报废材料亦有巨大的价值。废旧的汽车作为资源的载体,与自身产品很难剥离出来。因此,我们需要一种新型运作模式让资源与产品自身分割开来,这种新型运作模式就是将物联网技术运用到可循环经济中,建立出完整的智能化互联网系统。
2面向可循环经济的物联网技术的应用
21汽车的可循环经济网络
汽车的可循环经济网络是将汽车整体作为一个网络节点,将汽车所属的所有零件安装智能节点,并且将物联网技术作为主要的技术支撑,建立与汽车相关的制造商、服务商、车主、网络运营商等相关单位共存的系统。其具体的应用主要有生产环节、销售环节、回收环节。
211生产环节
在汽车生产制造环节应用物联网技术,营造智能生产系统,即在非人力的情况下通过自动化生产线进行制造运作。在物联网技术的支持下,实现所有的原材料以及生产的半成品或者成品可以在整个生产线上进行追踪识别,这样不仅可以减少人为 *** 作的误差率,而且在一定程度上提高制造的速率,提高生产效益。在智能的生产系统下,为每一个原材料配备一个独立的EPC编码,这个EPC编码所储存的原材料信息以及后续对材料信息的添加、更改都会一直伴随原材料的整个使用生命周期。
为了实现物品之间的读写交互,在原材料入库、出库或者加工以及回收等阶段都要相匹配地安装读卡器、设置传感器。原材料上所携带的自身EPC编码可以将原材料的信息通过代码的形式用读写器进行读取,然后利用发射器以及无线网络的传送将其代码发射到RFID信息服务系统的服务部,用这样的方法就可以将原材料的具体详细信息储存在本地的信息服务器中,并且可以通过对象名解析服务对原材料的代码进行统一资源标识。
通过网络在RFID信息服务器中获得其代码所记载的原材料的具体信息以及自身属性,相关工程人员在制作环节就可以通过网络对原材料的生产过程进行监控。在生产环节采用EPC技术不仅可以在数量众多的零件中找到所需要的零件,还有助于工程管理人员掌握生产线流程信息,及时解决补货、缺货等问题,确保整个生产流水线工作稳定、高效地进行。
212销售环节
当前车载智能系统被广泛运用,而车载智能系统的核心技术就是物联网技术。车载智能系统作为汽车的灵魂系统,一方面要对信息进行记录以及处理,另一方面担负着Intel网、移动经营网络、汽车服务商等网络信息实时交互的工作。
车载智能系统包含不同的功能模块:首先是智能控制模块。智能控制模块可以对车况实时监控并且记录车体的实时信息以及车主的驾驶系统,以提高行车的安全性。另外,该系统还可以对汽车的零件数据实时记录,为回收环节提供精确的数据。其次是车主服务模块,这一模块是车载智能系统中一个重要的应用。
车主服务模块为车主在驾车中提供更加人性化的服务,让车主更加体验到人性化驾驶的乐趣。该模块设置了自动导航、自动泊车、车站信息查询等功能。最后是智能应急模块,车辆在行驶过程中会遇到很多突发情况,预知并及时处理突发状况是非常有必要的。车载智能系统中的智能应急模块对突发情况可以采取相对应的应急措施,也可以设置多重应急模块,例如防盗追踪、安全保障、远程控制等。
213回收环节
车载智能系统的回收环节主要依靠EPC所记录的数据。在智能回收环节中可以随时查录任何重要零部件的信息,比如使用寿命、质地、产地等。回收系统通过查录到的EPC信息,可以将汽车的零件进行精确的分类,并且掌握是否可回收、可利用或者可报废等情况。智能化系统具有将车体的数据信息同汽车智能回收系统中的相关数据信息进行相互分享以及沟通的功能,可以有效地协助汽车拆卸行业从人力进行零件分类转化成工业自动化运行的模式,既可以使分类精确又可以提高工作效率。
本地的Savant系统对当地的废旧、废弃车辆零部件的相关信息进行实时更新,并将这些及时更新的数据传输到汽车产业物联网中的EPC信息服务器以及对象名解析服务器中,这样相关联的企业以及汽车用户就可以通过Internet了解到汽车重要零部件的各项信息,进而可以增强对这些汽车部件的利用,亦能在一定程度上保证重要零部件的安全性。
由此可见,智能车载系统可以利用物联网技术来获取更为精准、及时的报废汽车的车辆信息,并且根据报废汽车上的零件信息对其进行二次加工。当然, *** 作人员也可以根据零部件的信息来确定该零件的功能及其实用信息。
在物联网技术的运用下,车载智能系统不仅可以将汽车回收业进行高度整合,也可以对废旧资源进行合理的循环应用,在避免资源浪费的同时保护了生态环境。
22面向可循环经济的物联网技术的关键技术
面向可循环经济的物联网技术有五大关键性的技术。
(1)射频识别技术。
其实质是一种非接触式的自动识别技术,能够以射频信号智能地识别目标对象,同时取得有关的数据信息,而且全程自动化,不需要人工的干预,尤其不受环境的限制。RFID技术不仅可以对静止物体进行识别,还可以对一些高速运行的目标对象进行准确识别, *** 作也极为快捷方便。物联网理想的状态是对全球范围内的目标对象实现信息的监控、共享。
(2)智能传感器网络技术。
传感器的作用相当于人的皮肤、眼睛、鼻子、耳朵等感受外界变化的器官,接收的是外界温度、光、电、湿度等变化的信号,将变化信号信息应用于网络系统中,为数据的分析、采集、传输提供具体、可靠的数据支持。从传统传感器到智能传感器,再到嵌入式Web传感器的研发,传感器逐渐开始朝着微型化以及信息化等方向发展和进步[5]。
其中,传感单元(由传感器和模数转换功能模块组成)、处理单元(包括CPU、存储器、嵌入式 *** 作系统等)、通信单元(由无线通信模块组成)以及电源是组成传感器网络的智能节点的几个基本单元。
在一个健全的传感器网络中,智能节点基本上出现在目标对象上及周边,同时智能节点相互之间能够进行互相协作。利用互联网络可以把搜集的区域信息传送到远程控制管理中心,比如车载智能软件系统;反之,远程管理中心亦可以对网络节点进行远程控制检测。
(3)GPS定位系统。
在车载智能系统中,车载GPS接收机通过接受卫星发来的数据以及坐标经纬度,将车辆的无线MODEM以GSM短信方式由GSM公司实时传到监控中心,并最终在电子地图中显示出来,由此可对车位的目标有更为精确的定位,以便对车辆进行实时监控。在车辆遇到突发情况时,车载报警模块会发出报警信息,智能系统直接将现场的具体报警信息及时传送到总控制台。
(4)智能技术。
通过在目标对象中植入相关智能系统,使目标对象能够与用户之间进行主动或者被动的交流。
(5)纳米技术。
物联网技术的迅猛发展,使电子元器件更加智能化、微型化。将纳米技术应用到物联网中,可以使更加微型化的物体进行数据的交互与连接。
3结语
如今物联网技术的发展已成为科技发展的主流,大到科技航天,小到车载导航,与我们的生活息息相关。我国人口多、资源相对不足,对可再生资源缺乏合理利用。可循环经济模式符合我国国情,将物联网技术应用到可循环经济中是应对当前发展的必由之路。
参考文献:
[1]高杨,李健基于物联网技术的再制造闭环供应链信息服务系统研究[J]科技进步与对策,2014(3):19-25
[2]陆学,陈兴鹏循环经济理论研究综述[J]中国人口资源与环境,2014(S2):204-208
[3]钱志鸿,王义君物联网技术与应用研究[J]电子学报,2012(5):1023-1029
[4]燕妮浅论物联网技术的应用研究[J]IT论坛,2013(19):81
[5]杨忠敏物联网时代:传感器将迎来黄金十年[J]中国公安安全,2014(6):160-168
;工业制造大数据分析大数据不仅仅是大量的数据的堆积。大数据的重要属性之一,是人们设法收集并弄清楚不断变化的数据类型。如果只是大量采集同一类型的数据,再大的数据量都不能称之为大数据。
如何实现智能制造是大家都关心的问题。从哈佛商学院的迈克尔·波特到宾夕法尼亚大学沃顿商学院,有一个普遍的共识,即数字化转型是智能制造实现的途径。重要的是,这个共识也来自于众多的世界级制造业企业与企业家们。
这一共识是基于无数技术趋势的融合,例如,物联网、赛博系统(CPS)、工业物联网、移动技术、人工智能、云计算、虚拟/虚拟增强现实(VR/AR),以及大数据分析等。我们一定要保持清醒,不要简单地认为有了这些技术,未来五年就是制造业的黄金时期。道理很简单,这个新制造业文化的变革进程是相当复杂和艰难的,没有行业、企业与用户的融合推进,无法实现这次变革。数字化转型不仅仅意味着企业简单的数字化,而是把数字作为智能制造的核心驱动力,利用数据去整合产业链和价值链。
自工业革命以来,为了改进运营,制造商一直以来都在有意地采集并存储数据。随着时间的推移,数据在制造业分析的需求将越来越大。然而在过去的许多年间,利用数据的根本动因并没有改变,数据的复杂性增强,数据转化为情报的能力越来越大。
2012年高德纳给出大数据定义,其中特别强调大数据是多样化信息资产,不仅关注实际数据,更关注大数据处理方法。数据量大小本身并不是判断大数据价值的核心指标,而数据的实时性和多元性对大数据的定义和价值更具直接的影响。
在讨论工业大数据分析的时候,我注意到两种不同的观点:
第一种观点认为,制造业向来都有大数据。几十年来我们的企业一直在通过历史记录、MES、ERP、EAM等各种应用系统采集数据。在部分产业链环节,特别在市场营销方面,大数据算是一个新的热词。
第二种观点认为,从工业大数据角度看,制造业是一个尚未打开的市场或刚刚开启的市场。存在大量不同类型的数据,但如今它们还未被应用到分析之中。
考虑到这些观点,面对任何新的市场提法,包括名词解释、定义或分析框架,我们始终都应该保持适当的怀疑精神。这里我更多倾向于第二个观点。我们的制造业的确有“大量数据”,但这并不是我们大多数人从市场上所理解的“大数据”涵义。在搞清楚工业大数据分析之前,我们应该如何定义制造业的大数据?这里可以通过大数据的三个特性,进一步了解大数据的特性。
数据来源
工业大数据的主要来源有两个,第一是智能设备。普适计算有很大的空间,现代工人可以带一个普适感应器等设备来参加生产和管理。所以工业数据源是280亿左右大量设备之间的关联,这个是我们未来需要去采集的数据源之一。
第二个数据来源于人类轨迹产生的数据,包括在现代工业制造链中,从采购、生产、物流与销售内部流程以及外部互联网信息等。通过行为轨迹数据与设备数据的结合,大数据可以帮助我们实现对客户的分析和挖掘,它的应用场景包括了实时核心交易、服务、后台服务等。
数据关系
数据必须要放到相应的环境中分析,才能了解数据之间的关系。譬如,每一款新机型在交付给航空公司之前都会接受一系列残酷的飞行测试。极端天气测试就是测试之一。该测试的目的是为了确保飞机的发动机、材料和控制系统能在极端天气条件下正常运行。
问题的处理关键在于找到可能产生问题的根源,消除已知错误,并确保解决方案的可靠有效。一旦找到并确定了根本原因,同时具备了可接受的应急措施,就可把问题当成一个已知错误来处理。问题调查的过程一定需要收集所有可用、与事件相关的信息,以确定并消除引起事件和问题的根本原因。数据采集与分析必须要事件/问题发生的环境数据结合。
数据价值
对于数字化转型,大数据不仅要关注实际数据量的多少,最重要的是关注大数据的处理方法在特定场合的应用,让数据产生巨大的创新价值。如果离开了收益考虑或投资回报(ROI)的设计,一味寻求大数据,则大数据分析既无法落地也无法为企业创造价值。
工业大数据分析的定义
发动机是飞机的心脏,也是关乎航空安全,生命安全的重中之重。为了实时监控发动机的状况,现代民航大多安装了飞机发动机健康管理系统。通过传感器、发射系统、信号接收系统、信号分析系统等方式采集到的数据,会经由飞机通信寻址与报告系统,通过甚高频或者卫星通信传输出来,这就是为何GE的发动机监控系统每天会获取超过1PB数据的原因。
生产执行系统(MES)与飞机发动机健康管理系统如出一辙。我们可以从工厂的生产中,实时采集到海量的流程变量、测量结果等数据。基于大量数据集而生成的报表,或是基础统计的分析并不足以称为制造业的大数据分析。
数据类型的多样性是工业大数据分析的重要属性
大数据不仅仅是大量的数据的堆积。大数据的重要属性之一,是人们设法收集并弄清楚不断变化的数据类型。如果只是大量采集同一类型的数据,再大的数据量都不能称之为大数据。
例如,生产环境中收集的时间序列模拟流程变量,数据的类型是单一的,很容易建立索引,即使存在千千万万,也不足以成为大数据。
数据必须包括高度可变性和种类多样性。制造工厂中存在无数的大数据应用,但并不包括简单地分类和展示一连串的流程测量结果,对这些工作,基本的统计展现就可以完成。一些大数据的数据库或数据湖的构成部分也是文本信息、图像数据、地理或地质信息和非结构信息,例如,通过社交媒体或其他协作平台获得的数据类型。
制造业信息结构概括起来分为两层,一个是管理层,一个是自动化层。从经营管理、生产执行与控制三个纬度来实现决策支持、管理、生产执行、过程控制以及设备的连接与传感。制造业中大数据分析是指利用通用的数据模型,将管理层与自动化层的结构性系统数据与非结构性数据结合,进而通过先进的分析工具发现新的洞见。
大数据分析对企业生产智能的意义
制造业创新的核心就是要依托大量的前沿科技。先进的技术是创新的手段。在新技术的支持下,可以通过一体化的制造运作管理系统MOM将企业管理应用系统,例如ERP、EAM等系统与工业自动化的相关系统整合为一体。在一体化制造运作管理的基础上,我们可以实现集IT+MOM+MES+BI的一体化制造企业信息系统解决方案。
从两化融合的角度来看,信息系统供应商要从企业的主信息系统提供商(MIV,MainInformation systems Vendor )定位来做好规划、标准、功能设计、实施策略的统一性工作。协助企业做好风险控制,降低投资,降低 *** 作维护成本,实现企业信息系统全集成。
特别需要注意的是,企业管理信息平台被普遍认为是制造企业管理的集成和仪表板工具。许多供应商既大量投资其与ERP和自动化系统专有的集成,也投资开放式集成,还投资仪表板和移动技术,希望随时随地为需要正确信息的决策者提供衡量标准。
制造业大数据分析的三种途径
途径一,利用开放技术与平台,将任何系统的数据移动到任何其他地方。
制造运作管理系统建设项目是系统工程,不仅仅是一套我们理解的传统软件系统,更多的是项目执行和服务的平台。这需要在项目管理与制造企业的策略“客户服务”上,体现出制造企业的综合管理能力与软实力。
整个平台要从前期、工程实施以及售后服务这三个大的阶段来架构。在前期规划中,要重视标准、设计与实施,特别是与管理一体化的信息系统形成统一的对接。有了前期统一规划的制定,工程实施的环节可把行业的经验、集成能力、实施能力、软件开发能力等融合。特别需要在组织上建立和形成超级团队的制度。而持续服务、长期经营,将物联网应用融入与“软件+云服务”的互联网+战略是后续服务的考虑重点。
在制造业大数据分析工作中,必须要加强通过物联网科技的应用对后续持续服务的支撑作业。通过工业物联网,实现的及时响应客户、物联网软硬件系统定期巡检、提供应急备件、提供易耗品、完善应用等功能来加强和锁定与企业的供应链企业之间的长期合作。通过管理平台与物联网数据,可以持续为客户提供有价值的服务。
途径二,投资工厂内外系统架构堆栈中能够处理结构性和非结构性数据的数据模型。
新技术是创新革命的核心,其中很重要一个特点就是集成,即制造运作管理系统MOM与ERP、EAM、OA、商业分析的集成,包括一键登录、界面集成、消息推送、工作流集成、主数据、应用集成总线与平台。
由于这些系统之间主数据全部统一,所有系统之间的数据交互依靠应用系统总线进行数据交互,整合了跨系统的业务流程、工作流、服务流程等之后即实现无缝集成和分析。对于企业管理者来说,一键登录后,可以根据不同的岗位,个性化制定并且显示与管理最相关的必要信息。这就是互联网所带给我们的分享思路。
途径三,通过时间序列、图像、视频、机器学习、地理空间、预测模型、优化、模拟和统计过程控制等先进的分析工具与制造业企业内的大数据平台结合分析,从而洞见尚未显现的情况。通过传感器、感应器、传输网络和应用软件等物联网数据,与管理应用软件结合起来,将是今后制造业大数据分析的一大方向。
培养企业内部大数据分析专家
作为一个行业,我们需要有机地发展行业特定的大数据分析工具集,这样才能让现在的行业专家,从足够的数据科学中实现数字化转型。为了推动转型,我们需要一大批优秀的企业利用这种方法,并向其他人或同行证明其价值。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)