物联网就是物物相连的互联网。这有两层意思:其一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;其二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信,也就是物物相息。
物联网通过智能感知、识别技术与普适计算等通信感知技术,广泛应用于网络的融合中,也因此被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。
扩展资料:
物联网的特征:
①首先,它是各种感知技术的广泛应用。物联网上部署了海量的多种类型传感器,每个传感器都是一个信息源,不同类别的传感器所捕获的信息内容和信息格式不同。传感器获得的数据具有实时性,按一定的频率周期性的采集环境信息,不断更新数据。
②其次,它是一种建立在互联网上的泛在网络。物联网技术的重要基础和核心仍旧是互联网,通过各种有线和无线网络与互联网融合,将物体的信息实时准确地传递出去。在物联网上的传感器定时采集的信息需要通过网络传输。
由于其数量极其庞大,形成了海量信息,在传输过程中,为了保障数据的正确性和及时性,必须适应各种异构网络和协议。
③还有,物联网不仅仅提供了传感器的连接,其本身也具有智能处理的能力,能够对物体实施智能控制。物联网将传感器和智能处理相结合,利用云计算、模式识别等各种智能技术,扩充其应用领域。
从传感器获得的海量信息中分析、加工和处理出有意义的数据,以适应不同用户的不同需求,发现新的应用领域和应用模式。
④此外,物联网的精神实质是提供不拘泥于任何场合,任何时间的应用场景与用户的自由互动,它依托云服务平台和互通互联的嵌入式处理软件,弱化技术色彩,强化与用户之间的良性互动,更佳的用户体验,更及时的数据采集和分析建议,更自如的工作和生活,是通往智能生活的物理支撑。
参考资料:
通过高低压隔离耦合电路,隔离低频三相交流电与单板低压,保证单板安全,同时提供PLC信号注入和提取的高频通路。
通过接收链路,滤波、处理从交流电力线上提取的PLC信号。
通过发送链路,对PLC信号进行功率放大,然后向交流电力线注入PLC信号。
通过PLC控制器,实现PLC信号和RS485信号双向转换。
通过RS485收发接口电路,提供RS485信号接收和发送的通路,实现与数据采集器通信
华为plc智能家居方案工作原理
华为plc智能家居方案这是基于HPLC/IEEE19011结合华为特有技术,且面向物联网场景的中频带电力线载波通信技术。其工作频段范围在07-12MHz,噪声低且相对稳定,信道质量好;采用正交频分复用(OFDM)技术,频带利用率高,抗干扰能力强;通过将数字信号调制在高频载波上,实现数据在电力线介质的高速长距离传输。PLC-IoT应用层通信速率在100Kbps到2Mbps,通过多级组网可将传输距离扩展至数公里,基于IPv6可承载丰富的物联网协议,使能末端设备智能化、实现设备全联接。
同时,PLC-IoT精确有效地建立了电力线通信信道传输模型,根据频率选择特性确定最佳信号传输频率,并通过大量的实测数据分析获得电力线的信道特性。可将其优势可以总结为:
一、基于开放标准的IPv6技术,不同类型的末端设备可以共享PLC网络,物联网关主机侧应用和容器内多个应用也可共享同一个PLC网络,独立访问各自管理的末端设备而互不影响,提升PLC网络的并发能力和通信效率。
二、基于华为主推的新一代台区识别技术,无需任何外加设备,根据宽带载波技术特点和电网及信号特性,仅通过软件分析处理,在模块本地自动分析出末端设备所归属的变压器区域。利用无扰台区识别的结果,可免除白名单配置,从而减少现场配置,提升设备部署效率。
三、PLC-IoT+RF双模通信采用宽带电力线载波与微功率无线通信技术融合,在高频次采集的场景下,PLC-IoT与RF双通道并行采集不同节点的数据,提升效率40%左右。关键信息交互时,双通道可同时传输关键信息,形成冗余通道,实现可靠通信。并且当设备发生停电故障、PLC链路断开时,可通过RF通信及时上报停电事件。
四、PLC-IoT模块配合旁路耦合电路,为PLC-IoT通信提供了又一种逃生通道。当电力线开关断开后,PLC-IoT模块可通过旁路耦合单元继续通信,将停电事件等重要信息上报给物联网关,实现停电主动抢修,提升运营效率和客户满意度,解决停电后如何将信息上报并及时进行处理的问题。
五、PLC-IoT模块结合边缘计算网关,提供即插即用框架,PLC-IoT尾端模块开放SDK,第三方应用通过简单函数调用,即可实现自身末端设备的自动发现,以及向容器中业务APP与远端物联网平台的注册,使能物联网关与末端设备快速建立业务通道,有效解决传统末端设备上线流程复杂,安装部署耗时的问题。
PLC-IoT产品:
PLC头端
》IP化PLC头端通信模块(配套核心板使用)
》作为PLC网络的中央协调器,负责组建PLC网络
》尺寸:9262mm6762mm245mmPLC小型化尾端
》IP化PLC尾端通信模组(集成在末端设备中)
》作为PLC网络的组网节点,受协调器管理
》支持合作伙伴二次开发
》尺寸:36mm27mm1755mm(不含pin针)PLC标准化尾端
》IP化PLC尾端通信模块
》作为PLC网络的组网节点,受协调器管理
》尺寸:655mm453mm20mm物联网关核心板
》边缘计算核心板,支持虚拟化和容器技术
》支持合作伙伴基于容器开发APP应用
》尺寸:926mm80mm139mm
华为PLC解决方案
以华为全屋智能主机为中央控制系统,具备稳定可靠的PLC全屋网络,高速全覆盖的全屋WiFi,支持丰富的可拓展的鸿蒙生态2配套,对全屋环境、用户行为及系统设备等进行分布式信息管理和智能决策,给用户带来沉浸式、个性化、可成长的全场景智慧体验。
方案配置中包含PLC硬件使能器件+场景体验:其中硬件包括,全屋智能主机(含全屋Wi-Fi6+系统),以及传感器类,窗帘电机类,照明驱动类(含灯具),控制面板类等核心PLC硬件使能器件,场景体验包括,预置50+场景,其中包含首批鸿蒙AI场景(普通场景为通过ifttt预设条件设置的场景,鸿蒙场景为搭载鸿蒙系统搭建的全新AI场景),同时支持消费者自定义拓展场景体验。
为家庭的两张网络,一张为采用最新PLC技术的全屋家庭控制总线网络,全屋PLC技术具有高成熟、高稳定、高连接、高可靠、易布署等优势。目前已实现支持2000米传输距离,轻松覆盖高达500平的大户型,华为实验室测试显示累计100万+小时不掉线,通讯成功率高达9999%,极端条件断网不断联;在扩展性上可连接设备多达384个,满足家庭大量设备扩展需求。
另一张为实现全屋无死角覆盖的全屋Wi-Fi6+无线网络,也是家庭宽带的优势解决方案。全屋Wi-Fi6+主路由模块包含1个IPTV、1个上行连光猫、1个连PLC、5个多房间AP扩展共8个网口,实现全屋Wi-Fi覆盖。
plc技术是什么
在知道什么是PLC-IoT之前,我们需要先了解PLC是什么。PLC(PowerLineCommunication)即电力线通信,又称电力线网络,指利用既有电力线,将数据或信息以数字信号处理方式进行传输。
PLC不需要组网和额外通讯费用,与现有路灯控制系统兼容也非常好。但是PLC受线缆质量、负载影响较大,对信号的抗干扰能力较差。
PLC-IoT(PowerLineCommunicationInternetofThings)对PCL进行了改良,PLC-IoT的抗干扰能力更强,信通的质量更好,同时,可以将数字信号调制在高频载波上,通过多级组网可将传输距离扩展至数公里,实现数据在电力线介质的高速长距离传输。
简单来说PLC,即电力线通信技术(PowerLineCommunication,简称PLC)是以电力线(低压、中压或者直流)作为媒介,传输数据与信息的一种载波通信方式。
PLC电力线通信技术实现了数据在电力线高速、可靠、实时、长距离的传输,突出特点是网随电通,无需额外部署专门的通信线即可接入网络,华为全屋智能是基于华为海思PLC-IoT芯片开发的全屋智能系统。
PLC-IoT系统可以单独控制各个设备,也可以根据需求编辑场景实现不同产品同时控制,可以与HiLink平台的各个设备实现联动控制,用户通过华为智慧生活App远程或近端查看和控制设备。
华为全屋智能PLC与传统PLC区别
电力载波技术十多年前也有应用,像电力猫等也一直在使用这一技术。
华为全屋智能使用的PLC技术跟传统PLC技术本质的区别在于使用协议、带宽技术、传输数据类别。
首先不同于路由器、电力猫使用的PLC技术,华为全屋智能PLC-IoT是基于协议IEEE19011的系统;而路由器PLC是基于协议Ghn的技术。IEEE19011协议属于窄带技术,频宽16MHz-12MHz,仅传输控制信令和心跳报文,每个设备对带宽的占用很小;而Ghn技术属于宽带技术,因为在传输数据类别上面效率就完全不一样,传统PLC技术,传输的是数据业务,占据大量带宽资源,所以在使用中可能会受到其他电器的噪声干扰,导致传输速率有跳变,在部分干扰较大的场景下,会影响使用体验,也就是通常说的“失灵”,而其通常在开放环境使用,没有隔离器等措施,容易受到干扰。
华为全屋智能的PLC-IoT系统作为一条独立的回路接入家庭电路中,为了减少阻断传统家电设备产生的噪声,在独立回路上安装了一个滤波器,阻断掉传统家电对智能家具设备的干扰,从而达到稳定、安全的需求。PLC回路可最多支持384个设备。智能家居PLC技术是一个成熟的技术,在电力网,路灯等工业场景广泛应用,稳定通信距离可以高达2KM,华为将这个技术应用到家居场景,设备的连接稳定性可以得到保障。
华为PLC是什么
PLC只是一种技术路线,和ZigBee,SigMesh,甚至传统的总线技术一样,它就是个技术路线而已,直到目前,ZigBee和SigMesh也没有分出个高下,有所长也有所短,PLC加入战局把传统的总线技术也放到了一起对比,这是ZigBee和SigMesh无法做到的。
PLC已经在远程抄表和路灯监控的应用上验证了自身“广域”的应用价值,只这一点就是其它所有技术路线都几乎无法企及的,华为的野心在于真正的万物互联,智能家居只是其中一个部分,PLC几乎同时可以满足广域智能互联和家居智能互联的应用,又能同时兼顾快速改造和重新搭建两种业务应用类型,所以是个“大致正确”的方向,剩下的问题只是技术和应用的成熟度,以及性价比。
另外一个非常重要的但通常都不会被放到桌面上来讲的内容,是标准,这不仅涉及到利益,和5G技术应用一样,用星条国的话讲,还涉及到国家和社会安全,以及家庭和个人隐私保护。
如果ZigBee,SigMesh、KNX和PLC都能达到基本一样的互联和智能效果,性价比方面不会有过大的差别,在社会公共领域和大规模家庭应用方面,PLC会成为首选项,这是社会综合需求。
巨型企业做标准和资本,大型企业做战略和策略,中型企业做业务和渠道,小型企业做产品和技术,重心是不一样的,目标也是不一样的,结果当然不一样。
PLC至少有三个因素符合华为智能互联方面的技术路线选择需求:1、应用领域的覆盖性;2、全新的标准制定;3、有线无线的无缝结合。
在此基础上,华为强调的是HiLink系统,并没有完全排斥其它类型的智能技术融合,比如SigMesh,也是很有希望融入到华为的智能互联体系内的。
HiLink是根系,Wi-Fi是主干,PLC和SigMesh还有其它一些有可能融入的智能互联技术是分支,智能音箱路由网关开关面板插座是绿叶,终端应用产品是开花结果。华为plc智能家居方案这套系统能让现实更接近理想中的智能生活,想当年这种设计只会出现在科幻故事、里,像一回家,就自动开窗帘、开地暖,把灯光调到合适亮度,反正想实现什么功能,直接买个功能家电接入这套全屋智能系统即可。
传统基于穷举或纯数学理论层面的分析,对于现代高强度加密算法而言,算力有限导致无法实现穷举,算法的复杂性也无法通过数学工具直接破解,根据近代物理学发展出来的理论,电子设备依赖外部电源提供动力,设备在运行过程中会消耗能量,同时会跟外界环境存在声、光、电、磁等物理交互现象产生,设备本身也可能存在设计薄弱点,通过这些物理泄露或人为进行物理层的修改获取数据,然后运用各类数学工具和模型实现破解。然而在做物理攻击时,往往需要昂贵的设备,并要具备数学、物理学、微电子学、半导体学、密码学、化学等等多学科的交叉理论知识,因此其技术门槛和攻击成本都很高,目前在刚刚结束的 Blackhat 2018 上,展台上展示了多款 ChipWhisperer 硬件工具,作为亲民型的物理攻击平台,获得了一致的好评。
(来源 Newae 官方)
ChipWhisperer Lite 版官方商店售价 $250 ,不管是实验学习,还是实战入门,都是极具性价比的,本文主要介绍主流的一些物理攻击手段,以及对 ChipWhisperer 的初步认知,后续将会据此从理论、原理、实验以及实战等角度详细介绍该平台。
真正的安全研究不能凌驾于真实的攻防场景,对于物联网安全而言,其核心目标是真实物理世界中的各种硬件设备,真实的攻击场景往往发生在直接针对硬件设备的攻击,因此物联网安全的基石在于物理层的安全,而针对物联网物理攻击手段,是当前物联网面临的最大安全风险之一。
物理攻击就是直接攻击设备本身和运行过程中的物理泄露,根据攻击过程和手段可以分为非侵入攻击、半侵入式攻击和侵入式攻击。ChipWhisperer 平台主要用做非侵入式攻击,包括侧信道和故障注入攻击等。
传统密码分析学认为一个密码算法在数学上安全就绝对安全,这一思想被Kelsey等学者在1998年提出的侧信道攻击(Side-channel Attacks,SCA)理论所打破。侧信道攻击与传统密码分析不同,侧信道攻击利用功耗、电磁辐射等方式所泄露的能量信息与内部运算 *** 作数之间的相关性,通过对所泄露的信息与已知输入或输出数据之间的关系作理论分析,选择合适的攻击方案,获得与安全算法有关的关键信息。目前侧信道理论发展越发迅速,从最初的简单功耗分析(SPA),到多阶功耗分析(CPA),碰撞攻击、模板攻击、电磁功耗分析以及基于人工智能和机器学习的侧信道分析方式,侧信道攻击方式也推陈出新,从传统的直接能量采集发展到非接触式采集、远距离采集、行为侧信道等等。
利用麦克风进行声波侧信道
利用软件无线电实施非接触电磁侧信道
故障攻击就是在设备执行加密过程中,引入一些外部因素使得加密的一些运算 *** 作出现错误,从而泄露出跟密钥相关的信息的一种攻击。一些基本的假设:设定的攻击目标是中间状态值; 故障注入引起的中间状态值的变化;攻击者可以使用一些特定算法(故障分析)来从错误/正确密文对中获得密钥。
使用故障的不同场景: 利用故障来绕过一些安全机制(口令检测,文件访问权限,安全启动链);产生错误的密文或者签名(故障分析);组合攻击(故障+旁路)。
非侵入式电磁注入
半侵入式光子故障注入
侵入式故障注入
本系列使用的版本是 CW1173 ChipWhisperer-Lite ,搭载 SAKURA-G 实验板,配合一块 CW303 XMEGA 作为目标测试板。
CW1173 是基于FPGA实现的硬件,软件端基于 python,具有丰富的扩展接口和官方提供的各类 API 供开发调用,硬件通过自带的 OpenADC 模块可以实现波形的捕获,不需要额外的示波器。
板上自带有波形采集端口(MeaSure)和毛刺输出(Glitch)端口,并自带 MOSFET 管进行功率放大。
并提供多种接口触发设置,基本满足一般的攻击需求。
芯片物理结构为许多CMOS电路组合而成,CMOS 电路根据输入的不同电信号动态改变输出状态,实现0或1的表示,完成相应的运算,而不同的运算指令就是通过 CMOS 组合电路完成的,但 CMOS电路根据不同的输入和输出,其消耗的能量是不同的,例如汇编指令 ADD 和 MOV ,消耗的能量是不同的,同样的指令 *** 作数不同,消耗的能量也是不同的,例如 MOV 1 和 MOV 2其能量消耗就是不同的,能量攻击就是利用芯片在执行不同的指令时,消耗能量不同的原理,实现秘钥破解。
常用的能量攻击方式就是在芯片的电源输入端(VCC)或接地端(GND)串联一个1到50欧姆的电阻,然后用示波器不断采集电阻两端的电压变化,形成波形图,根据欧姆定律,电压的变化等同于功耗的变化,因此在波形图中可以观察到芯片在执行不同加密运算时的功耗变化。
CW1173 提供能量波形采集端口,通过连接 板上的 MeaSure SMA 接口,就可以对能量波形进行采集,在利用chipwhisperer 开源软件就可以进行分析,可以实现简单能量分析、CPA攻击、模板攻击等。
通过 cpa 攻击 AES 加密算法获取密钥
ChipWhisperer 提供对时钟、电压毛刺的自动化攻击功能,类似于 web 渗透工具 Burpsuite ,可以对毛刺的宽度、偏移、位置等等参数进行 fuzz ,通过连接板上的 Glitch SMA 接口,就可以输出毛刺,然后通过串口、web 等获取结果,判断毛刺是否注入成功。
时钟毛刺攻击是针对微控制器需要外部时钟晶振提供时钟信号,通过在原本的时钟信号上造成一个干扰,通过多路时钟信号的叠加产生时钟毛刺,也可以通过自定义的时钟选择器产生,CW1173 提供高达 300MHZ 的时钟周期控制,时钟是芯片执行指令的动力来源,通过时钟毛刺可以跳过某些关键逻辑判断,或输出错误数据。
通过 CW1173 时钟毛刺攻击跳过密码验证
电压毛刺是对芯片电源进行干扰造成故障,在一个很短的时间内,使电压迅速下降,造成芯片瞬间掉电,然后迅速恢复正常,确保芯片继续正常工作,可以实现如对加密算法中某些轮运算过程的干扰,造成错误输出,或跳过某些设备中的关键逻辑判断等等 。
对嵌入式设备的电压毛刺攻击
随着物理攻击理论和技术的进步,针对硬件芯片的防护手段也随之提高,芯片物理层的攻防一直在不断角力 ,现实环境中,能量采集会受到各种噪声因素的干扰,硬件厂商也会主动实施一些针对物理攻击的防护,单纯依靠 ChipWhisperer 平台难以实现真实场景的攻击,因此还需要结合电磁、声波、红外、光子等多重信息,以及对硬件进行修改,多重故障注入,引入智能分析模型等等组合手段,今后会进一步介绍一些基于 ChipWhisperer 的高级攻击方式和实战分析方法。物联网的工作原理,首先是对物体属性进行标识,属性包括静态和动态的属性,静态属性可以直接存储在标签中,动态属性需要先由传感器实时进行探测;其次需要识别设备完成对物体属性的读取,并将信息转换为适合网络传输的数据格式;最后将物体的信息通过网络传输到信息处理中心,由处理中心完成物体通信的相关计算,处理中心可能是分布式的,如家里的计算机或者手机,也可能是集中式的,如电信运营商的因特网数据中心。
物联网在移动监测、智能可穿戴、POS机、气象、医疗和能源等行业用途很大,而且是实现设备联网不可或缺的产品,不少相关的top域名都被注册。工业物联网是指在工业中应用物联网技术,实现工业特有的价值增值的技术模式。
所有物联网都是为了实现万物互联,特别是物与物的互联,但是工业物联网又有其专有属性,原因是与工业物联网相对的消费物联网本身的联网密度、联网的实时性、联网物的异质化要求都不高,而工业物联网的要求主要表现在联网密度、联网实时性及联网异质化三个方面。
思考所有问题都需要从宏观到微观的细化过程,工业物联网也不能例外,我认为对工业物联网进行深度思考,需要从以下五个维度进行分析,否则将会要么带来一叶障目,要么带来好高骛远。
首先需要我们思考的问题是,工业物联网的价值、意义和目的是什么;第二个是工业物联网需要连什么的问题,这是一个范围的概念;第三个需要我们思考的是连入物联网的物的层级问题,也就是深度的问题;第四个需要我们思考的是实现物联的价值成本分析;第五个需要我们思考的是如何建设工业物联网。
互联网实现了计算机与计算机的连接,或者说实现了人与人的连接,这个连接带来了人的交互的便利,在这个基础上涌现出很多全新的、颠覆性的商业模式,例如,电子商务、即时通讯,社交媒体等等;而物联网将实现人与物、物与物的连接,同样我们也期望带来全新的、颠覆性的商业模式,甚至更进一步,期望带来人类生活、生产方式的全新的颠覆性的模式。
作为物联网主战场的工业物联网,人们对其的期许是在工业设计、制造、流通环节带来革命性的变革,为传统工业注入新的活力,提供新的势能,驱动工业在更高维度上发展、创新、乃至变革。随着计算、存储能力的提升,特别是大数据、人工智能的发展,任何行业对数据获取手段都提出了前所未有的要求。对数据获取手段的要求主要表现在四个特征,第一是高效性;第二是准确性;第三是实时性;第四是经济型;在当前技术能力下,能够同时满足这四个特征的就是工业物联网,首先,芯片技术已经发展到一个具有较强计算能力的MCU在美元以下,RFID芯片价格甚至已经到美分这个量级,使得工业物联网有了物质基础,同时满足了经济性要求;近三十年的通讯技术的发展,从模拟到数字,从简单调制到复杂调制技术的商用化,使无线通讯可以很廉价地覆盖几百米甚至数公里的范围,满足了数据获取的密集部署要求,同时由于工业物联网的永久在线的特征,使工业物联网满足数据获取的高效性、实时性要求;微电子技术在近年也发生了突飞猛进的发展,不论在价格上还是在进度上都有了长足的突破,满足了数据获取的准确性。
总而言之,工业物联网的出现是在以下几个条件成熟时涌现出来的不可逆转的趋势:
1、快速变化的市场需要数据支撑,产生了市场对数据获取的急切要求;
2、MCU的发展使得计算能力快速提升;
3、以调制技术为核心的通讯技术发展为联网建立的管道基础;
4、传感技术,特别是以MEMS为标志的微电子技术的发展给予感知世界提供的保证;
工业物联网不是规划出来的,是各种技术与需求发展进化的产物,是生活、生产、经济发展到一定高度后自然而然出现的,是在需求的驱动下,众多行业创新带了的自然产物。
通过工业物联网,可以把传统经济中不可数字化之物数字化,可以把传统不可数字化之行为数字化,可以把传统不可能变为可能,甚至变为容易获得、解决的方案。
这个问题是第一个问题的延续,如果不考虑经济性,那么我们可以说工业物联网连接一切可连接之物,但是,当我们在做一个务实的、有价值的方案时就不能不考虑可行性及经济性,那么工业物联网连什么呢?我们认为这是一个从哪里来到哪里去的问题,我们通过上面对价值、意义和目的分析可知,我们应该从目的反推,一切从目的出发,时刻盯紧企业需要弥补的最关键环节,例如,如果对量化OEE有需求,那么我们就要连接设备状态;如果要减少在制品,那么我们就要对在制品进行追踪;如果能源消耗对企业是重中之重,那么我们就要把能效物联化,等等。世界上不存在同样的两片树叶,同样地,世界上也不存在同样的两个企业,我们只能对企业本身进行深入分析,紧紧聚焦于企业价值,在保证经济性的基础上,确定工业物联网的实施范围方案。联网范围一个核心点是连入物的属性,也就是说我们通过分析连入物的属性与企业建设工业物联网目标的耦合度,决定需要实施工业物联网的广度。
通过分析工业物联网连什么后,我们得到了连入物的内容,接下来需要我们决定是对每个/每类连入物我们该数字化哪些属性,这里遇到工业物联网特有的一个障碍,需要连入工业物联网的物的可连通性问题, 特别是在设备互联时,可连通性表现的特别突出,例如,有的设备具有开放的通讯协议和可用的通讯接口,有的设备不开放协议等等,那么可连通性就是对方案供应商的很大的考验,我们的经验是有四种方案可供选择:
1、使用设备开放的协议;
2、使用设备自带的传感器;
3、添加新的传感器;
4、改变观察侧面及维度,使用全新的采集模式;
其中第四条,改变观察的侧面和维度,使用全新的连接方式是使用第一性原理,避开设备不开放协议或接口的阻碍,避开被设备供应商牵着鼻子走的方向,从本质上获取数据。例如:通过能效检测获得设备的使用状态,通过震动传感分析设备部件的故障、甚至是转速等,只要通过第一性原理从你需要的信息入手,而不是被动地从设备可以提供的数据入手来提供物联解决方案的方式。直接把我们需要的信息做为目标,观察除了直接连接设备外,我们还能够如何获得需要的信息,因为只有我们获得的数据能够与设备提供的数据在信息上能够“同构”即可。例如,我们可以在我们的物联设备上安装一个震动传感器,从传感器获得的数据中,我们即得到了设备是否开机,又得到了是否启动工作,同时还得到设备的转速。如果不用第一性原理,而是硬要跟设备互联,那至少要采集三个数据,并且未必设备能够给你。这就是典型的边缘计算的案例,边缘计算的计算规则一定要具有定制能力,可以说边缘计算一定是一个知识容器,可以方便地把客户、厂家,甚至是第三方的知识融入的容器,我们开发的支持脚本的设备已经具有了初步的边缘计算的功能,我们需要在这个方面继续加大支持力度。
所以,通过分析企业价值和物的可连通性,我们就可以明确定义需要连入物层级,也就明确了连入物的连接深度;
在连入物联网的物的层级中一个重要的概念是管理粒度,对于制造业来说,连入物的管理粒度大概分为如下几个层级:
1、传感级;
2、设备级;
3、产线级;
4、车间级;
5、企业级;
也就是说我们要在经济性可行的前提下定义数据获取的粒度。理论上讲,细粒度一定比粗粒度更好,更有价值,但是当加入成本分析后,可能并不一定粒度越细越好,需要按照各种制约因素找到一个平衡点。
价值成本永远在企业行为中持有权值最高的赞同或者否决的一票,通过前三项分析,我们仅剩下最后一个问题没有解决,这也是关乎价值成本的关键:管理粒度问题,我们到底需要在多细的粒度下进行管理?这带来了一个哲学问题:世界是不是需要黑盒子。什么意思呢?当我们确定一个管理粒度后,比管理粒度更细的信息将被隐藏在黑盒子中,这个黑盒子将成为我们分析深度或者认知深度的制约因素和约束条件。我们可以通过价值成本分析来找到这个平衡点,从而明确黑盒子的大小,并最终确定连入工业物联网的物的特性。
我们的期许是工业物联网建设的价值观,其他一起都是方法论。首先,我们在规划物联网时要本着既要有高瞻远瞩,又要有务实可行的精神。在思考黑盒子的大小时我们要高瞻远瞩,设计方案尽可能地以黑盒子尽量小为目标,而实施方案则按照价值成本分析选择合适的黑盒子的大小,也就是选择合适的管理粒度,从而保证投入收益的平衡,甚至我们可以把黑盒子尽量定义的大些,用以验证工业物联网的可行性,最大可能地降低工业物联网实施的风险。
总之,我们应该从以几个方案来确定工业物联网的建设原则:
1、期望获得什么结果?
2、期望用什么方式获得想要的结果?
3、需要信息基础提供什么?
4、工业物联网是否能够获得这些信息?
5、工业物联网如何获得这些信息?
6、获得这些信息的性价比如何?
7、回归分析,评估预期结果是否符合经济利益?
8、落地实施。物联网定义
物联网(The Internet of things)的定义是:通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把所有物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。
物联网原理
物联网是在计算机互联网的基础上,利用RFID、无线数据通信等技术,构造一个覆盖世界上万事万物的“Internet of Things”。在这个网络中,物品(商品)能够彼此进行“交流”,而无需人的干预。其实质是利用射频自动识别(RFID)技术,通过计算机互联网实现物品(商品)的自动识别和信息的互联与共享。
而RFID,正是能够让物品“开口说话”的一种技术。在“物联网”的构想中,RFID标签中存储着规范而具有互用性的信息,通过无线数据通信网络把它们自动采集到中央信息系统,实现物品(商品)的识别,进而通过开放性的计算机网络实现信息交换和共享,实现对物品的“透明”管理。
“物联网”概念的问世,打破了之前的传统思维。过去的思路一直是将物理基础设施和IT基础设施分开:一方面是机场、公路、建筑物,而另一方面是数据中心,个人电脑、宽带等。而在“物联网”时代,钢筋混凝土、电缆将与芯片、宽带整合为统一的基础设施,在此意义上,基础设施更像是一块新的地球工地,世界的运转就在它上面进行,其中包括经济管理、生产运行、社会管理乃至个人生活。
物联网发展
2009年11月20日,工业和信息化部部长李毅中在全国装备工业“两化”融合典型经验座谈会上首次明确了物联网应用示范方向。他表示,传感网、物联网的发展将优先选择重点工业领域、基础设施、环保监测、公共安全、工业控制、医疗卫生等领域,开展应用示范。同时,要加强TD-SCDMA与传感网的密切结合,推进传感网与通信网融合发展。联想到当年“三金工程”对我国信息化发展的推动,示范工程的启动意味着尚处于产业初创阶段的物联网将进入发展快车道。
在工业和信息化部牵头组织的国家科技重大专项“新一代宽带无线移动通信网”中,传感网就已作为主要支持内容之一,加大了资金投入,启动了从总体战略到关键技术与设备等多项课题研究
2010年,中国政府将出台一系列物联网发展相关的产业政策,国务院、发改委、工信部、科技部等部门都有可能出台相关产业扶持政策来加速促进中国物联网产业发展。与此同时,各省市和产业园区也将会有相关的配套扶持政策出台,江苏省无锡市、北京中关村科技园等将有可能成为地方政策出台的先行者。
在技术与标准化方面,北邮、中科院、南邮、无锡中国物联网产业研究院以及中国物联网标准化组织有望在物联网标准和关键技术方面取得突破性进展,一系列重点行业应用产品将被推出市场并逐步开始规模化应用。
行业应用将成为未来几年物联网产业发展的主要驱动力。研究发现:智能交通、城市安防、智能电网等行业市场成熟度较高,这些行业传感技术成熟,政府扶持力度大,在许多城市已经开始规模化应用,市场前景广阔,投资机会巨大,将成为未来几年物联网产业发展的重点领域;医疗卫生、家庭、个人等领域的智能传感应用则需要较长的时间,技术、标准均有待于进一步完善,大多产品还处于试验阶段,短时间内不会大规模应用。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)