由于现场的实际需要以及后期的产线升级,客户往往需要购买西门子、三菱、欧姆龙等不同品牌、不同型号的PLC,以及支持Modbus、OPC DA、OPC UA等不同协议的传感器设备来保证生产工作的正常运行。设备协议的多样性使得现场设备之间的联系不够紧密,进而增加现场数据的互联互通的难度。
2、老旧设备数据的采集
随着工业40的快速推进以及科技的飞速发展,越来越多的新技术逐渐应用于工业现场中。为了保证市场的竞争力,企业必然需要淘汰一些老旧设备,引入一些新设备来实现产线的升级。在升级改造过程中,如果继续使用老旧设备,那么将会给企业带来额外的维护成本;如果直接淘汰老旧设备,那么企业将会面临巨大的开销和折旧费用;如果混合使用新旧设备,那么由于新旧设备之间协议的不兼容,导致新旧设备无法进行数据交互,企业难以实现数据的统筹管理。
3、设备与云端接入
现场设备支持的协议大部分都是Modbus、OPC、Profibus、EtherCAT等工业协议。但是IOT平台和云平台等平台支持的是>
不管是物联网、云计算还是大数据时代,都是我们信息时代的发展基石,那么它们到底是个什么东西呢?一起了解下吧!
当我们进入到互联网时代的时候,不管你是听一首歌,还是浏览一个网页,关于你的各种数据就已经开始存在着了,那么如何存储这些大数据?并且如何灵活的运算和分析这些数据?这都是大数据平台所要做的事情,提供一个媒介来看管这些数据,在大数据平台,开发者们或可以将写好的程序放在“云”里运行,或是使用“云”中提供的服务。
所以接下来,我们要讲的就是云平台,都说企业上云,这“云”到底是什么呢?其实,我们可以把云看做是一个容量无限大的仓库一样,这也是云计算不断发展下的产物,为企业提供一些建模,开发,集成,运行,管理等一系列的IT解决方案,在“云”上,可以实现资源的调动,存储等,以此来保障整个IT系统不崩盘,顺利的运行。
物联网是互联网发展成熟后的一个必然趋势,互联网的包括的范围还是非常的有限,但是物联网不同,它要把一台冰箱,甚至马路上的一个小灯泡都能通过物联网技术连接起来,赋予他们新的智能化的东西。可以这么说,万事万物都在物联网的“掌控”之中。
大数据 说的是一种移动互联网和物联网背景下的 应用场景 ,各种应用产生的巨量数据,需要处理和分析,挖掘有价值的信息, 侧重于海量数据的 存储、处理与分析 ,从海量数据中发现 价值 ,服务于生产和生活。
物联网 是把所有物品通过信息传感设备与互联网连接起来,进行 信息交换 ,即物物相息,以实现智能化识别和管理,物联网的发展目标是 实现万物互联 , 应用创新 是物联网发展的核心,智能手表/手环、无人驾驶、无人商店、智能工业、智慧城市等等都物联网的应用场景, 基于物联网延展出来的 边缘计算 已经开始兴起。
云平台 则是各种资源的 虚拟化、优化配置与管理 ,在此之上提供开箱即用的应用服务给用户,典型分为 IaaS、PaaS、SaaS 三种模式,其中IaaS、SaaS发展的比较快,IaaS方面的赛道已被头部玩家锁定。目前PaaS的发展也在快速发力, 中台概念的普及推动着PaaS的发展, 基于PaaS开发SaaS ,或者 SaaS附带高扩展能力的PaaS 都是典型的形态 。
云平台和物联网、大数据是密切相关 ,物联网提供海量数据采集、基本处理的抓手与通道,云平台提供虚拟基础环境、运行环境、开发环境、应用平台,大数据提供数据处理模型、计算、加工、分析以及更高级的趋势分析、智能预警等,我国工业2025、工业互联网发展对这三块需求都比较旺盛,前景一片光明。
数通畅联专注于企业IT架构、SOA综合集成、数据治理分析领域,感谢您的阅读与关注。
在信息化、互联网+时代,它们分属不同的技术研发方向领域。
数据处理分析决策领域,称发展由局部孤立数据到大数据;通信网络链接领域,称发展由互联网到物联网;应用软件技术服务领域,称发展由终端应用到云集约分布应用。显然,数字信息技术发展终将殊途同归。
物联网、大数据、云应用服务、人工智能、区块链,它们是紧密关联的,物联网生成大数据,对大数据的处理分析,需要集约多进程的分布式应用服务;基于大数据的综合决策,需要人工智能辅助;数据的真实性、安全性,需要区块链保障。
产业数字化转型,全部产业将升维到数字产业;再进行全数智产业集约优化生态闭环,则所有异构平台,必将集约融合为”物联网大数据云服务”平台,实现大一统。
在物联网系中,纲是智慧中国、智慧政府、智慧城市;节点是云平台,分布式应用服务、分布式存储、分布式记帐;目是连接万物的末梢(移动、固定)终端,目终端通过授权链接,可访问纲和节点服务。
首先,分属三个不同的行业,但都属于大平台级别。相互独立,却又相互交融;
其次,简单点理解大数据以内容为主,提练数据为当下或未来服务;物联网以物为主,万物互联为核心;云以存储/集中服务为主,民主集中制是特色。
但是这三者相互关联。物联网可以产生大数据,要用云平台;同时,大数据也对物联网和云平台的应用也有支撑作用。
最后,当这三者发展到均衡一定程度,人工智能化才能真正实现。
万物互联给人感觉庞大且有距离感。但其实,它离你并不遥远:街头密集的共享单车、越来越多的智能穿戴和智能家居……当物联网应用于生活的方方面面,包括移动医疗、工业物联网、智能零售、环境监测、资产跟踪等等,它将极大地方便我们的生活、提高工作效率
一、物联网概念
随着互联网技术、传感器技术和人工智能技术的快速发展,物联网技术也应运而生,物联网技术在各类领域能发挥重要性变革,对解放生产力、提高工作效率和推动规模化生产等方面贡献颇大,特别是在农业领域大有可为。实现智慧农业,必须依靠物联网技术为依托,以智慧平台为核心,立足市场需求,构建生产组织智能化、产品质量溯源化、市场经营网络化为一体的产业体系。
物联网是通过智能传感器、射频识别、激光扫描仪、全球定位系统、遥感等信息传感器设备及系统和其他基于物-物通信模式的短距离自组织网络,按照约定的协议,在物品与互联网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种巨大智能网络。它是通信网和互联网的扩展应用和网络延伸,主要是实现人与物、物与物的信息交互。
二、物联网四层模型
在信息层面,数据信息经历生成、传输、处理和应用四个阶段,分别对应着物联网的感知识别层、网络构建层、数据处理层和综合应用层。感知识别层是利用感知技术和智能装备对物理世界进行感知识别。网络构建层是按照特定的通信协议搭建各类网络对信息进行传输,以实现物-网互联。数据处理层通过大数据和人工智能技术对网络层采样的数据进行预处理、计算存储和数据挖掘等一系列 *** 作,最大地发挥出信息的生产效能。综合应用层是集成各类技术以实现实时控制、精准管理和科学决策等功能的应用系统,从而改进人的生产方式。各类技术应对不同环境、不同需求独立展开工作,各层面间又是联系紧密,如同链条式协同配合。
感知层作为物联网的“神经末梢”,主要是通过信息感知技术将生活生产各方面映射成数据信息,并能可靠传送到网络层,实现物理世界和信息世界连接起来。信息感知技术是指利用传感器、RFID、GPS和RS等实时实地对农业领域物体进行信息采集和获取。在农业生产现场可以利用无线传感器采集温湿度、光照、溶解氧浓度和农作物长势等参数,利用视频监控设备获取农作物成长现状,利用遥感技术大规模感知农作物表面和环境因素。信息感知层作为物联网的基础,获取大量的数据信息,为信息进一步加工、处理、分析而科学决策和指导生产经营打通“二元”壁垒。
网络层要在感知层和处理层发挥承上启下作用,是以现场总线技术、无线传感器网络技术(WSN)和移动通信技术互为补充的通信网络将传感设备连接“上网”。信息传输技术可分为有线和无线、短距离和长距离,它们有各自特点、应对不同环境、利用不同信道共同组建集成网络体系,以实现高度可靠的信息交流和共享。无线传感器网络成为农业信息传输的“主力军”,通过包括传感器节点、汇聚节点、任务管理节点。大量具有独立处理能力的微型传感器节点布置在监测区域逐跳传输,并路由到汇聚节点,然后通过互联网或卫星抵达任务管理节点,最后用户通过任务管理节点配置和管理传感器网络以实现监测任务发布和数据收集。常见的无线局域网技术有蓝牙、WIFI、ZigBee,无线广域网技术有LPWAN、NB-IOT、4G和5G。特别是以“万物互联”为目标的5G将农业物联网数据传输效率带来“质的跃升”。
处理层是农业物联网的“灵魂”,通过信息处理技术对感知层采集的信息存储和挖掘分析形成预测预警、智能决策、优化控制和疾病诊断等智能模型,从而对农业生产和经营给出科学的指导。农业生产和经营过程中,数据信息是呈指数型爆炸产生,不仅是体量大,而且结构复杂、实时性强、关联度高,必须通过大数据技术处理、存储和管理,才能从海量数据中获取更多的价值。农业大数据技术平台是以Hadoop架构、MapReduce软件模型、其他组件补充的生态软件体系形成的分布式海量数据存储管理、运算处理和分析平台。数据挖掘是指从海量数据中通过算法搜索隐藏的信息关系,主要手段是机器学习、深度学习、计算机视觉等人工智能技术。只要获取隐藏知识,才能帮助决策者做出合理、正确的决定和决策。
应用层是农业物联网的“指挥室”。主要通过感知技术、传输技术、处理技术和设备进行软硬件综合集成,形成智能控制、监控决策、专家系统、物流溯源等等应用。根据生产、经营的和管理不同需求,开发出特定功能的应用,用户通过web端或移动客户端应用实时掌握信息、发出精准控制指令。可以说,先进技术发挥设备的最大生产力,综合应用改变人的工作方式,有利于做出更科学合理决策。足球分析软件的精度可以通过科技化算法和物联网技术的应用来提高。具体来说,可以考虑以下方面:
1 数据采集:通过传感器、摄像头等物联网设备采集现场比赛的数据,如球员跑动轨迹、球的位置、传球次数、射门次数等。
2 数据处理:通过算法分析采集到的数据,提取出有价值的信息,如球员的跑动速度、传球精度、进攻效率、防守能力等,从而得出比赛的局势和趋势。
3 模型建立:通过机器学习算法建立预测模型,根据历史数据、球队战术、球员实力等因素进行预测,从而预测比赛结果。
4 可视化展示:将分析结果以图表、动画等形式进行展示,让用户可以直观地看到比赛的情况和分析结果。
通过应用科技化算法和物联网技术,足球分析软件可以更加准确、全面地分析比赛,为教练员、球迷等提供更好的服务和支持。智能手机把人类碎片化时间充分利用了起来,对个人对企业都带来了价值,但更碎片化的时间手机做不到,更深层次的个人需求,手机也做不到。智能手表由于具备了离人体更近,佩戴时间更长这两大特征,更加符合人们的使用习惯,作为人体最重要的数据采集终端,这就是智能手表任何一个单一功能的实现,都不是最专业、最高效的前提下,用户和资本依然充满期待的原因。
智能手机不能满足更个性化的需求
从马斯洛的5个需求层次来看,过去的工业时代,更多的是满足人类生理和安全的需求。到了互联网和移动互联网时代,人类的社交和尊重需求开始被满足,智能手机成为重要的终端和入口,智能手机把人类碎片化时间充分利用了起来,对个人对企业都带来了价值,但更碎片化的时间手机做不到,更深层次的个人需求,手机也做不到。随着物联网技术的发展,二八理论和长尾理论很难再继续起作用,因为每个人的需求都能够被针对性的满足。智能手表由于具备了离人体更近,佩戴时间更长这两大特征,更加符合人们的使用习惯,也将为人类带来更大价值。
人类的手腕一直以来都占据着非常关键的位置,智能手表作为人体最重要的数据采集终端,这就是智能手表任何一个单一功能的实现,都不是最专业、最高效的前提下,用户和资本依然充满期待的原因。未来,每台设备都具有数据采集价值的时候,将产生全新的商业模式和商业环境,必将诞生新的伟大的企业。
物联网思维模式带来的商业变革
传感器是物联网最基础最底层的部分,是一切物联网上层应用实现的基础。传感器的应用将是物联网与互联网最大的区别,导致互联网思维到了物联网时代不再适用。互联网思维本身是基于把终端连接到网络上,对互联网思维而言,终端就是入口,就是用户。互联网思维影响下的企业,会与用户终端的交互上下功夫,这就是传统的入口思维,流量思维。如UGC、参与感、粉丝经济、众筹经济等本质上都是互联网思维下的产物。准确的说,互联网是基于人的网络,信息某种意义上靠人来采集分析。
物联网技术最大的不同是信息传递方式的改变,需求表达这一过程将被弱化。物与物之间能交流,会通信是物联网的重要特征,这个过程不再需要有人参与其中。比如我手上戴的智能手表,不管我身在何处,只要我戴着他,他就会24小不间断的自动采集我身体的静默数据,包含睡眠检测、心率、血压、体温等多种维度测量我的健康指标。
如果在一个趋势范围内我的体温超出正常值,手表就会预警提示我去看医生,智能手表所连接的APP后台会利用AI算法,根据我的位置及就医偏好帮我预约适合我的的医生和医院,去医院的路上我就把我的近期身体存储在云端的数据选择性开放给我的医生,到了医院,医生不用望闻问切,不用各种验血、拍片就帮我拟定好了完整的医治方案及用药措施。这样的生活场景归功于传感器和机器智能,让更多人享受更好的体验,得到生活效率的提升。物联网的思维模式,由于信息传输通道的碎片化和多样化,新的商业模式将在此基础上产生。1 无处不在的数据分析
越来越多的企业在利用从他们客户那里收集到的大数据更好地了解客户需求,并且优化产品使其能更好地服务客户。这就是无处不在的数据分析,它更看重数据的质量,而非数量。将数据最大化地转变为有价值的创新,利用数据洞悉市场,以此为基础做出明智的商业判断。
如果关注数据质量,将收集到的所有信息进行筛选就变得至关重要。例如人工智能,其需要迅速地完成一系列动作:数据收集、分析,并且瞬间作出判断采取行动。严格来讲,对数据质量的关注需要嵌入到数据采集的过程中。在这样的数据分析背后也要关注消费者信息的私密性。GfK2015年进行的针对全球20个地区的消费者研究结果表明,全世界消费者都在担心他们的数据是怎样被收集、售卖和利用的。
2 虚拟现实(VR)
2016年,从行业到消费者,从硬件到软件,关于虚拟现实,一切都处在被普及教育的阶段。随着三大巨头接连推出消费级产品,且“售罄”之讯频传,虚拟现实作为最受关注的新智能领域迅速席卷全球。全球VR头显市场规模预计在2020年会达到28亿美元,其中供游戏者使用的VR头显设备占据多数份额。中国市场2016年全年零售量会达到300万台左右,从GfK监测的VR头显在线市场来看,从2016年1月到4月,VR头显零售量几乎翻了20倍,虚拟现实硬件产品正在经历一场初期爆发式的增长。但目前依然是以VR盒子为主。整体来看,中国的VR市场现在还处于野蛮生长的阶段。相信在未来VR应用会逐步向直播、旅游培训、医疗、装修、房地产、教育等领域渗透。
3 人工智能(AI)
人工智能最终是重现一遍人类思考的过程。作为一个人工制造的机器,终极形态的AI将拥有与我们相同的智力水平:学习、推理、使用语言、构想原始创意。然而只拥有学习能力的AI已经快速地渗透到我们的生活中了。语音识别是目前人工智能中落地较早、目前投入及研发的核心领域之一。基于人工智能,各个厂商可发挥的空间很大,不一样的应用及方向才是真正有趣的地方。2016年,AI助理的发展或许会超越智能手机的发展。人工智能是一块有待探索与开发的市场,这块市场拥有多种可能性。
4 可穿戴产品
智能手表、健康监测手环、相机、GPS定位设备及心率监测设备进入主流市场还需多久尽管万众瞩目的Google Glass及Apple
Watch的发布已经俘获了消费者的想象力,但只有少数消费者接纳了这些设备。中国可穿戴市场2016年销量预计达3160万台,环比2015年上涨32%,但其中以价格较低的手环产品占据市场的大多数,整体市场销量持续上升的同时增速减缓,市场经过了2015年跳跃式发展后开始进入一个更趋理性的阶段。如果可穿戴产品想要吸引更多的消费者,有以下四点需要注意:一是与物联网的融合,把可穿戴设备和现有的个人科技生态相融合将会成为扩大市场的基础性举措。二是设计和材质,外形设计已经成为可穿戴产品跟上时代潮流的一大绊脚石。三是精准有效的信息收集,提高数据的准确性和解读能力是可穿戴厂商正在解决的另一大问题。四是引人注目的新案例,特色鲜明的产品会逐渐与消费者建立特有联系。
5 视频消费
视频消费的发展速度比之前任何人预期的还要快,并且线上已经成了人们观看视频的主要渠道。从社交媒体上的短片到视频网站的**服务和套餐服务,甚至到最近大火的视频直播,消费者似乎可以在任何时间、任何平台看到想看的视频内容。事实上,有人预言到2019年,80%的互联网流量消费将来自于视频观看。而随着投入到这个领域的玩家越来越多,从内容的生产者和发布者到各大品牌、厂商,互相合作会成为一种需求,只有通过这样多方之间的信息互换才能够释放更大的能量。
6 无人机
据GfK中国估算,2014年中国航拍消费级无人机市场为近6亿元,到2018年将激增到60亿元。而民用无人机市场更是有望在未来10年形成千亿元级规模,未来发展空间广阔。
无人机并不算是新产品。无人机在航拍、地形测绘、商业运输以及救援部署,甚至在自动机械化生产上,都可以起到作用,无人机技术在诸多领域所能发挥的用途正在被进一步挖掘出来并且会在降低商业成本、提高商业效率方面起到很好的催化作用。但是在实现这样的美好愿景之前依然有很长的路要走。目前无人机依然面对诸多阻碍,如缺乏“感知-避障”技术、载物重量上的限制、没有夜视功能以及电池续航时间有限等。
7 移动支付
全球移动支付市场比较复杂。目前传统的支付方式在许多成熟市场中都有着强大的根基,无法轻易撼动。相反,一些非洲市场和亚洲发展中国家市场则直接迈入了移动支付时代。在这样一个碎片化的环境中,对于品牌、制造商和零售商来说,理解移动支付当下的全球格局以及它的演变趋势至关重要。在中国,阿里巴巴、腾讯等第三方玩家已经率先鼓励联网用户通过手机在实体店或网店进行支付。小米、OPPO、魅族旗下具备支付功能的手机的使用也意味着在这一市场中,移动支付不仅存在,而且触手可及。而那些被认为将第一时间接受新兴技术的市场则呈现出与上述地区的截然不同的局面。当前,一些市场仍需提高消费者对于移动支付的认知度,而对于另一些市场而言,要做的则是减少移动支付的使用壁垒。
8 智能汽车
随着物联网技术的越发成熟,智能汽车也将应运而生。许多豪华轿车已经配备了大显示屏,并且车载大屏也会继续成为趋势,在2016年底或2017年初,为前排乘客设计的额外显示器也将出现在高档汽车中。为了让乘客更好地体验“增强现实(AR)”技术,一些OEMs甚至想要把显示屏幕延伸到整个挡风玻璃或者侧窗。屏显技术的进步为那些企图走到传统汽车供应商前头去的电子消费厂商和初创企业们打开了大门。过去,受到物联技术的限制,OEMs很难找到一个正确的商业模式,但是现在,机会来了。通过了解细分市场消费者的需求和喜好,量身开发车载APP和配套服务从而获取相应的报酬成为可能。
9 3D打印
3D打印机的销量目前还比较小。但是,随着更多的厂商加入到该领域以及消费者的认知度逐渐提高,这种情况在明年应该可以得到改变。拿德国为例,3D打印机的销量在去年增长了71%,而且需求还在进一步扩大。消费者认为3D打印技术极具吸引力,3D打印在最有可能影响他们生活的科技中排名第三。这比智能汽车、云计算、可穿戴设备还有物联网的排名都要靠前。这表明这项新技术的知识普及在全球已经非常高了。价格一直是新兴科技难以普及的主要障碍。但是随着成本的下降,价格也将不再是阻碍,3D打印技术的优势会变得越加明显和突出:更低的装配成本,减少浪费,极低的运输和配送费用和更快的新产品上市速度。
10 智能家居
一股智能家居的“淘金热”正在各领域中展开,传统厂家、互联网公司、国际技术提供商及零售商等各种组织都在寻求最大限度地参与到未来家居领域中来。根据GfK针对全球7国消费者所作的研究表明:绝大多数消费者(90%)知道智能家居,50%的消费者认为智能家居能改变他们的生活,78%的消费者同意这是一个具有吸引力的理念。目前智能家居想要获得成功的关键是让消费者能明白智能家居技术是如何提升他们的生活品质,并且提供参与度高且有效的用户体验。现在需要行业协作和消费者教育来驱动需求,并推动智能家居从厂商领导发展向消费者需求主导发展的创新转变。行业相关参与者需要合作并组建不同以往的合作关系。这会确保不同的设备和服务能在后台彼此连接来满足对便捷的需求。只有满足了这一点,智能家居的真正价值才能得以体现。根据GfK中国对家电智能化研究,中国家电产品智能化应用发展速度位于世界前列,但目前也处于厂商、零售商等供给方主导的阶段,还处于智能连接、手机远程控制等初级智能向更高级智能功能探索和尝试的阶段。中国庞大的用户基础和互联网业态演变将为智能家居的发展和创新提供良好的土壤,预计智能家居未来将会催生类似BAT级别的新企业。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)