数字孪生是充分利用物理模型、传感器更新、运行历史等数据,集成多学科、多物理量、多尺度、多概率的仿真过程,在虚拟空间中完成映射,从而反映相对应的实体装备的全生命周期过程。
数字孪生,有时候也用来指代将一个工厂的厂房及产线,在没有建造之前,就完成数字化模型。从而在虚拟的赛博空间中对工厂进行仿真和模拟,并将真实参数传给实际的工厂建设。而工房和产线建成之后,在日常的运维中二者继续进行信息交互。
数字孪生与CAD模型的相关关系补充:
当完成CAD的设计,一个CAD模型就出现了。然而,数字孪生与物理实体的产生则紧密相连:没有到实体被制造出来的那一刻,就没有它对应的数字孪生。
CAD模型往往是静态的,它的作用是往前推动,在绝大多数场合,它就像中国象棋里面一个往前拱的小卒;而数字孪生,则是一个频频回头的在线风筝:两头都有力量。
3D模型在文档夹里无人问津的时代已经过去。数字孪生可以回收产品的设计、制造和运行的数据,并注入全新的产品设计模型中,使设计发生巨大的变化。知识复用,变得越来越普及。
数字孪生是基于高保真的三维CAD模型,它被赋予了各种属性和功能定义,包括材料、感知系统、机器运动机理等。它一般储存在图形数据库,而不是关系型数据库。
数字化让制造型企业从根本上改头换面。随着企业对各类创新技术的采用以及对不同资质人才的聘用,新型的数字化工厂正悄然引领制造业的转型,并推动着制造业的中心迈向高度定制化的产品和系统。领先的制造型企业正采用一系列的先进技术实现生产乃至整条供应链的数字化。这些技术包括大数据分析解决方案、端至端的实时规划和互联、自控系统、数字孪生等。凭借这些技术,效率得以提升,企业能够批量生产高度定制化的产品。然而,想要完全发挥出数字化的潜力,企业仍需要与主要供应商和大客户实时互联。
作为在电子商务和电子支付领域内全球公认的数字化领先者,中国在制造业领域内对数字化的应用却仍处于起步阶段。尽管“中国制造2025”战略的颁布为产业变革注入了强心针、突显了战略紧迫性,但只有在企业大胆拥抱数字化的情况下才能取得实质性的进展,并产生深远影响。
在朝着数字化转型的道路上大步前行时,在“数字化工厂—欧洲数字化工厂高管调研”中梳理出的关键发现以及提出的数字化工厂蓝图,将协助企业规避实施中的风险,成功达成既定的目标。
调研成果综述
就数字化工厂这一热点话题,普华永道对来自大型工业及制造业领域内的200位企业高管开展了一次定量市场调研,并对行业领先企业的多位高管进行了深度的访谈。
参与此次调研的高管均为各自企业在产品开发、生产或技术领域的决策者。
据调研结果显示,领先的工业企业已经完成了项目的试点工作,开始着手推广数字化解决方案。以成熟的数字化战略为依托,这些工业先驱者采用创新型的数字化战略,拥抱全面的数字化转型。此外,通过培训和沟通,他们让员工参与转型,为企业的数字化成功做出自己的贡献。
通过战略、效益、技术和人才这四个维度(见下图),普华永道详细探究了数字化工厂背后的推动力,或许能为计划建设数字化工厂的中国企业提供一些参考。
1、战略
数字化工厂在高层心目中的战略地位甚高:调研结果显示,91%的工业企业正投资数字化工厂,但认为他们的工厂已经“完全数字化”的仅占6%。
数字化能围绕客户提供更好的生产支持:在计划对数字化工厂追加投资的受访者中有四分之三的人表示,通过本地化制造来更贴近客户,以及个性化、灵活化的生产是促成投资的两大主要因素。
数字化工厂对“德国/欧洲制造”起到推进作用:在计划对数字化工厂追加投资的受访者中总共有93%的人表示,有意在未来五年内将部分或全部的数字化工厂迁至德国。未来五年内的投资中有77%将用于新建数字化工厂或扩容。数字化正在强化欧洲工业中心的竞争力。
如果没有数字化工厂的打算,那么企业可能会在未来丧失竞争力。实现数字化工厂需要资金投入,需要携手内外部利益相关方来推行开放式创新。例如,飞利浦就在荷兰德拉赫滕工厂采用了这种方法。此外,还需要聘请和培养人才,应对诸多变化,在员工间建立信任感并得到他们的全力支持和充分投入。
有些企业在建设数字化工厂的问题上似乎准备浅尝辄止,并没有进一步追加投资的意愿。鉴于数字化工厂能够带来的巨大利益,这些企业可能会被积极实现数字化并不断改善的竞争对手抛在身后。
企业想要在如今竞争激烈的市场中生存,以客户为中心是一大关键要素。企业不断地贴近客户,能够更及时地对客户偏好的变化做出反应。此举还能有助于减少运输和物流成本,客户能以极小或者可以忽略不计的配送成本,从定制化的产品中获益。在部分行业中,受即时生产和即时供货等物流战略的推动,供应商更加贴近客户,整条价值链的本地化程度不断提升。
许多企业利用数字化来提升工厂柔性,更好地应对客户需求的波动。为了充分利用这些工厂的潜力,企业计划在占主要收入来源的市场中新建或扩建工厂。从推动生产决策的力度看来,对客户的聚焦远远大于劳动力成本。
2、效益
短期内难见回报——对数字化工厂的投资是战略性的举动,收回投资需要两到五年:近半数的受访者希望能在五年内收回对数字化运营的投资,而仅有3%的受访者希望在一年内收回投资。
企业希望五年后显著提升效率:几乎所有的受访者(98%)都将提升效率视为投资数字化工厂的主要原因。综合规划、资产利用率提升、质量成本降低以及自动化均有助于效率的提升。
大多数的受访企业将收回数字化工厂投资的期限定为五年。一般来说,决定的背后是翔实的商业论证和对投资的仔细考量。随着企业对各种数字化工厂解决方案的不断熟悉,他们对所需的实施时间和投入力度有了更清楚的认识,因而对收回投资的期限做出了较为保守的预测。
除了提升工厂效率之外,数字化工厂还能带来其他一些效益。例如,在航空领域,有些企业利用数字化工厂解决方案开展先进的飞机及发动机设计,打破了传统制造的局限性。此外,数字化工厂还能帮助企业减少能源和原材料的消耗,实现可持续发展的目标。企业正在利用数据来改善资源效率,让供应链更合理,实现按需订购原材料,减少库存。
但企业的目标远远不限于此。部分企业已经在规划无人值守工厂,在这些工厂中,电力将按需消耗。根据最新数据显示,自1990年起,工业品领域的能耗不断下降。但我们有理由相信,在数字化工厂的协助下,工业品企业在节能方面仍有潜力可挖。
3、技术
通过综合的制造执行系统(MES)实现工厂内外部互联:
数字化的第一步,是通过共用基础架构实现机器与其他资产间的互联。MES系统能实时规划和控制生产,提升效率、生产柔性和资产利用率。为了实现效益最大化,MES系统需要与ERP系统整合,从而让企业不仅实现内部流程的数字化,还能实现整条供应链的数字化。
协作机器人、数字孪生或增强现实等技术促使运营更精益、生产率更高:能够协助工人提升生产效率和产量、改善流程和产品质量的数字化技术正在迅速普及 — 未来五年,采用这些技术的企业数量有望翻番。工人和机器间的协作是重点发展领域,并诞生了数字孪生这种虚拟工厂的表现形式。增强现实的相关解决方案协助员工生产零缺陷的产品。企业通过预测性数据分析和机器学习等手段做出更明智的决策:
人工智能和数据分析是数字化工厂的推动力,半数以上的调研对象企业已经采用了智能化算法来做出更合理的运营决策。工厂内部和企业生态系统内部的全面互联,以及信息的智能化应用,对于保持竞争力而言将不可或缺。
4、人才
数字化生产意味着打造数字化劳动力:数字化工厂需要全新的工作方式。劳动力的组成将会发生变化,企业需要招聘和挽留相应的人才。数据科学家需要发现智能算法来提升运营表现,而人机智能交互也需要全新的技能。数字化培训项目以及招聘外部的“数字原住民”能确保成功打造数字化工厂。
数字化转型必须由高层挂帅、立即开始:企业的数字化转型需要高层的领导和指导。随着全球范围内的竞争对手迈上数字化之路,企业需要立即行动起来。
数字化工厂需要截然不同的工作方式,企业因此也需要打造数字化的劳动力。企业需要调整员工的组成,需要相应地招聘和挽留人才。随着我们步入人机交互的新时代,人才对数字化工厂的影响力不容低估。数字化工厂能协助企业面临老龄化社会的挑战。随着大批技术工人退休,大多数行业可能面临熟练劳动力短缺的局面。数字化能够从一定程度上弥补这种短缺。
通向数字化工厂的蓝图
领先的工业企业已经在数字化工厂的建设和发展方面迈出了坚实的步伐,在提升生产效率的同时,能够迅速可靠地生产出更多定制化、高质量的产品服务于市场。
对于许多没有打算建设数字化工厂的企业而言,缺乏一套数字化的愿景和企业文化是让他们裹足不前的最大阻碍。目前看来,这正是数字化工厂先行者们不可获取的一大要素。数字化愿景不仅只是考虑各项技术,而且还定义了这些技术如何在整个产品生命周期和企业生态圈中相互配合。阻碍企业制定数字化工厂计划的其他因素还包括机会不定、经济效益不明、投资代价不菲。吴贝言
学院:通信工程学院
学号:20012100036
嵌牛导读数字孪生是充分利用物理模型、传感器更新、运行历史等数据,集成多学科、多物理量、多尺度、多概率的仿真过程,在虚拟空间中完成映射,从而反映相对应的实体装备的全生命周期过程。数字孪生是一种超越现实的概念,可以被视为一个或多个重要的、彼此依赖的装备系统的数字映射系统。
嵌牛鼻子数字孪生,数字镜像,数字化映射,数字镜像模型
嵌牛提问数字孪生的应用
嵌牛正文
数字孪生是个普遍适应的理论技术体系,可以在众多领域应用,目前在产品设计、产品制造、医学分析、工程建设等领域应用较多。目前在国内应用最深入的是工程建设领域,关注度最高、研究最热的是智能制造领域。
美国国防部最早提出利用Digital Twin技术,用于航空航天飞行器的健康维护与保障。首先在数字空间建立真实飞机的模型,并通过传感器实现与飞机真实状态完全同步,这样每次飞行后,根据结构现有情况和过往载荷,及时分析评估是否需要维修,能否承受下次的任务载荷等。
数字孪生,有时候也用来指代将一个工厂的厂房及产线,在没有建造之前,就完成数字化模型。从而在虚拟的赛博空间中对工厂进行仿真和模拟,并将真实参数传给实际的工厂建设。而工房和产线建成之后,在日常的运维中二者继续进行信息交互。值得注意的是:Digital Twin不是构型管理的工具,不是制成品的3D尺寸模型,不是制成品的MBD定义。[1]
对于Digital Twin的极端需求,同时也将驱动着新材料开发,而所有可能影响到装备工作状态的异常,将被明确地进行考察、评估和监控。Digital Twin正是从内嵌的综合健康管理系统(IVHM)集成了传感器数据、历史维护数据,以及通过挖掘而产生的相关派生数据。通过对以上数据的整合,Digital Twin可以持续地预测装备或系统的健康状况、剩余使用寿命以及任务执行成功的概率,也可以预见关键安全事件的系统响应,通过与实体的系统响应进行对比,揭示装备研制中存在的未知问题。Digital Twin可能通过激活自愈的机制或者建议更改任务参数来减轻损害或进行系统的降级,从而提高寿命和任务执行成功的概率。
从产品全生命周期管理、工程全生命周期管理、车间管控系统几个方面梳理目前数字孪生的应用场景如下:[2]
最早,美国国家航空航天局使用数字孪生对空间飞行器进行仿真分析、检测和预测,辅助地面管控人员进行决策。[2]
Michael Grieves 教授和西门子公司主要使用数字孪生进行产品数据的全生命周期管理。利用数字孪生对产品设计、产品功能、产品性能、加工工艺、维修维护等进行仿真分析。[2]
以欧特克公司为代表的工程建设类软件供应商,将数字孪生技术应用于建筑、工厂、基础设施等建设领域,把建筑和基础设施看做产品进行全生命周期的管理。[2]
北京航空航天大陶飞等人将数字孪生应用于车间的建设和管控,主要涉及基于数字孪生的产品设计、基于数字孪生的虚拟样机、基于数字孪生的车间快速设计、基于数字孪生的工艺规划、基于数字孪生的车间生产调度优化、基于数字孪生的生产物流精准配送、基于数字孪生的车间装备智能控制、基于数字孪生的车间人机交互、基于数字孪生的装配、基于数字孪生的测试/检测、基于数字孪生的制造能耗管理、基于数字孪生的产品质量分析与追溯、基于数字孪生的故障预测与健康管理、基于数字孪生的产品服务系统等。
reference:baiduboxapp://swan/AZQtr4jkpf90T3X9QMWVLF1bkeV4LXxD/pages/lemma/lemmalemmaTitle=%E6%95%B0%E5%AD%97%E5%AD%AA%E7%94%9F&lemmaId=22197545&fr=aladdin&_baiduboxapp=%7B%22from%22%3A%221081000900000000%22%2C%22ext%22%3A%7B%22tplname%22%3A%22bk_polysemy%22%2C%22srcid%22%3A1547%2C%22order%22%3A%221%22%2C%22token%22%3A%22swanubc%22%2C%22searchid%22%3A%2212054588898962432503%22%2C%22third_ext%22%3A%7B%22ivkSource%22%3A%22h5_schema%22%7D%2C%22searchQueryEnc%22%3A%22_u2Hfja42ijWuDWVFmOfKxBtrKjBbM-8C_new%22%7D%7D&callback=_bdbox_js_4476&oauthType=search&searchParams=%7B%22failUrl%22%3A%22>
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)