通俗地讲,物联网就是“物物相连的互联网”,它包含两层含义:
第一,物联网是互联网的延伸和扩展,其核心和基础仍然是互联网;
第二,物联网的用户端不仅包括人,还包括物品,物联网实现了人与物品及物品之间信息的交换和通信。
物联网作为新一代信息技术的高度集成和综合运用,具有渗透性强、带动作用大、综合效益好的特点,是继计算机、互联网、移动通信网之后信息产业发展的又一推动者。
数字孪生在新型智慧城市建设中可以进行数字孪生流域建设、数字孪生排水管网、数字孪生桥梁防撞指挥等应用场景,进行数字化、精细化、可视化管理。
一、数字孪生流域政策环境:
2021年12月23日水利部召开推进数字孪生流域建设工作会议,水利部部长李国英提出:“数字孪生流域是以物理流域为单元、时空数据为底座、数学模型为核心、水利知识为驱动,对物理流域全要素和水利治理管理全过程的数字化映射、智能化模拟,实现与物理流域同步仿真运行、虚实交互、迭代优化”,同时强调以数字化、网络化、智能化为主线,以数字化场景、智慧化模拟、精准化决策为路径,以算据、算法、算力建设为支撑,加快推进数字孪生流域建设,实现预报、预警、预演、预案功能。
二、水利信息化发展现状:
①透彻感知能力不足:
水利感知的覆盖范围和要素不全,对于水文信息、环境信息、工程信息等方面的监测能力已经不能满足现有业务发展和管理需要,虽然现在能够通过地面、水上、航空、航天等技术与设备进行信息采集工作,但整体智能化水平仍处于相对较低的程度。对于将要建设的数字孪生流域体系要求仍有较大的距离,物联网技术与设备也没有得到充分的利用,且通信基础能力较为薄弱,在网络带宽、应急措施方面均有不足。
②信息基础设施“算力”欠缺:
现有水利业务网中,仅有6个省(自治区)的水利业务网能够通达到乡镇级水利单位,对于工程管理单位来说联通率更低,严重阻碍了水利业务应用“三级部署、多级应用”的发展原则。骨干网络不能满足现有数据传输、服务调用的需要。面对现在越来越多的影像、图像等数据的快速增长,缺乏大数据处理、云计算与数据存储能力。
③信息资源开发利用有待提升:
水利内部信息系统缺乏整合,导致现有水利设施基础信息不全、准确性不高、基础数据不统一、对象代码不统一、数据标准不统一等问题,各类业务和各级部门间存在数据“重采、重存”的现象。同时对所需要的如地质信息等联系紧密的外部信息缺乏共享,联动不足。
④业务应用智能化水平差距较大:
现有水利信息系统中的水利工程、水资源开发、水灾旱灾防御、水土保持等业务均存在业务与信息技术融合不深入,智能化水平不足,对于5G、AI、大数据、物联网等新兴技术未能充分应用,最终导致信息系统对业务发展支撑能力薄弱的问题。
三、水利数字孪生,实现物理空间数字化映射与智慧化模拟
广东地空智能科技有限公司协同水利专业机构,在智慧水利领域进行了相关的钻研和实践,通过感知层抓取实时监测数据,基于全数字测量、大数据、云计算、地理信息、三维虚拟模型、人工智能、区块链等十余项高新技术,整合水利各项基础数据,以水利时空数据为重点研究对象,聚焦于水利数据的管理、展示与分析,对水利空间进行精细、全面、动态的模拟,构建水利业务横向共享、纵向联动,以此实现各级水利部门间信息联通,真正打通涉水信息孤岛,打破涉水业务分割,为管理者进行安全分析评估、工程运维管理、防汛调度管理、综合展示等提供可视化的便捷支持。数字孪生水利信息化监管平台集成数字孪生流域管理系统、数字孪生模拟仿真系统和数字孪生知识服务系统三大系统,融合与汇聚了多源数据,建立全时空、多维度、多粒度的水利全时空资源池,实现水利数据资产的一体化管理;一方面升级与拓展水利一张图,建设基础数据统一、 监测数据汇集、 二三维一体化、三级协同贯通的数字底板,提供水利场景的高保真、高稳定、高质量模拟仿真;另一方面集成耦合多维多时空尺度的水利专业模型和AI智能模型,提供集分析-模拟-表达-决策于一体的“四预”能力,为“2+N”业务提供智慧化服务。
链接:网页链接
数字孪生水利信息化监管平台聚焦数字孪生,以物理流域为单元,以水利时空数据为底座,以流域数据集成和可视化、水利模拟仿真为核心,以水利知识为驱动,运用物联网、大数据、人工智能、虚拟仿真等技术,实现物理空间内全域、全要素、全过程的数字化映射与智慧化模拟,支撑水利精准化决策。
四、整合数据,搭建数字孪生水利大数据中心:
基于水利行业相关的数据标准与规范,梳理水利数据资源目录,接入并整合多时空、多粒度、多维度水利数据,包括基础地理空间数据、业务管理数据、监测感知数据、跨行业共享数据等,经标准化处理,形成数字孪生水利大数据中心,为用户提供统一标准的数据服务。
五、分类入库,形成水利时空大数据全景图:
分类融合与汇聚多时空、多粒度、多维度水利数据,构建标准一致的水利数据资源池,形成水利时空大数据全景图,为用户提供全方位、多时空、多粒度的全时空数据资源服务。
子系统一:数字孪生流域管理系统
数字孪生流域管理系统是数字孪生水利信息化监管平台的基础,主要是建设数据底板,为模拟仿真、知识服务提供海量数据支撑。系统构筑统一门户,接入多源水利时空数据,打破数据壁垒,实现数据统一管理;建立物理空间到数字空间的虚拟映射,构建水利时空全景一张图;综合运用物联网、云计算、大数据、人工智能、地理信息等新型信息化技术手段,提供海量数据分析能力,实现对水利空间的精细、全面、动态模拟,为精细化管理提供支撑。
①多源异构数据接入,实现数据统一管理
②“物理-数字”全映射,形成水利资源“一张图”:
③软、硬件加持,助力海量数据分析:
子系统二:数字孪生模拟仿真系统
数字孪生模拟仿真系统是数字孪生流域管理系统的升级,主要是提供高保真、低延时、高稳定的三维可视化场景,为提供细化、量化、动态、直观的计算分析提供支撑。系统基于大场景高效率图形可视化技术,借助轻量化+webp+块存储+子域等一系列技术,提升整体加载效率与浏览流畅度,实现多源、多维度、多粒度数据的高保真、高质量空间化表达与仿真建模。
子系统三:数字孪生知识服务系统
数字孪生知识服务系统是数字孪生水利信息化监管平台的核心内容与最终目标,主要是集成耦合多维多时空尺度的数据模型,提供“四预”能力。系统在共享水利部本级、流域管理机构各类计算模型与计算成果的基础上,按需构建水利专业模型、人工智能模型和水利知识模型,形成数字孪生水利模型库,提供工程调度、安全监测、知识挖掘等智慧化服务,实现“预报、预警、预演、预案”功能的综合决策指挥。
①集成水利专业模型,推进水利精准模拟:
聚焦智慧水利与空间智能领域,广东地空智能科技有限公司致力于打造专业的水文-水动力-水质耦合模型,支撑流域、区域的防洪抗旱、水资源水环境的调度管理、智慧城市的防洪排涝与水环境治理、大江大河的水污染应急调度指挥等,推进水利精准化模拟与分析。
②引入AI智能模型,助力水利智慧决策:
利用遥感AI、视频AI等技术,对遥感影像进行自动解译和加工处理,对雨水情、工情、险情、旱情、水土流失、水质水环境、非法采砂、水域岸线占用等实现大尺度的动态监测预警,提升水利安全监测能力。
③建立水利知识模型,支撑水利知识服务:
以模型库、知识库为驱动,快速分析研判,优化完善应急方案,配合人员终端信息交互,为单位内部以及与流域管理机构、水利部的异地多方会商、相关人力、物力资源应急调度指挥等提供支撑。
数字化的主要含义是构建“业务数字化、数字资产化、资产服务化、服务业务化”闭环,通过数字化技术能力反哺业务。因此信息化主要负责部门是IT部门,而数字化,主要对象部门为业务部门,并且是“一把手”工程,须从企业最高转型开始。另一方面,传统信息化更多关注的是人和流程,而数字化强调的是人、物理世界、数字世界的连通与联动,在数字世界构建一个第三维数字空间,数字空间的数据和模型控制物理世界的实体,也就是产品的整个生产制造过程,最终服务于人,这是制造业数字化转型的核心。
对工业企业而言,企业数字化转型就是构建数字化工厂,工业互联网是其数字化转型的核心部分,也是通向智能制造的必要途径,在工业领域就是物理形式的工厂在数字空间的形成投射并基于此来实现的以人机物(Human,Machines,Things)泛在互联的工业互联网,它便成为深度感知为支撑,智能决策为导向,精准管控为目的的细胞元化(cell,蜂窝)IT/CT/OT一体化工业系统,也叫数字孪生系统(CPS,信息物理系统),如下图所示:
3UCS数字化工厂之数字-工厂映射图
形象化后的拓扑图如下:
3UCS xWorks工业互联网拓扑图
因此数字化转型不是简单的信息化,而是为业务服务的,不是简单IT工程,主导部门为业务部门,首先是人的转型,整合好数据、业务、技术等,是管理是思维的转型,得先从战略上做出规划CEO、CTO、CDO、CIO等负责人作为数字化转型的推手,工业互联网作为数字化转型的承载,好好使用数字化工具推进数字化转型
要想更好的进行数字化转型最重要的是认知自己,盲目的启动数字化转型属于大概率失败的事件,首先弄清楚自己未来发展方向与规划,明确自己的需求,然后才是选择适合自己的技术、产品、系统等,用正确的方式方法才是通向成功的捷径。
当然您可能说我没办法把需求明确下来,并且市场经营环境随时发生着变化!确实每个企业都面临着这个问题,但如果能正确的选择一套方便个性化定制的开放平台(比如 3UCS xPlus),业务变化了而系统逻辑、业务跟着改,你自己可以定制,也可以请第三方(不一定是3UCS)帮你修改,同时又有丰富的基于该平台的开源资源例如ERP \MES等拿来改改用,那这是就变得简单了。
可以参看文章 bizfree:数字化转型怎么就那么的难?!
物联网平台指AloT产业链中负责连接的网络,承担着将终端设备、边缘、云端连接起来的职责。随着AloT产业发展,物联网设备数量快速增加,设备种类、设备应用场景日益丰富,更灵活的无线网络连接能力将是市场的必然选择。
目前全球有超过 600 多家物联网平台,物联网平台参与主体数量有很多,主要可以区分为通信厂商、互联网厂商、IT 厂商、工业厂商、物联网厂商、新锐企业。每种类型平台功能特点略有不同。
通信厂商主要包括运营商和通信设备供应商。如ctwing物联网市场,联通物联,中移物联,主要特点是汇聚电信能力和互联能力,向合作伙伴提供统一规范的服务。以ctwing为例,将物联网与5G、AI 、边缘计算、区块链、大数据等新技术深度融合,并基于中国电信CTWing50打造的物联网一站式购物平台,成为中国电信物联网产业生态的汇集地,提供丰富的5G、芯片模组、应急消防、安防监控、追踪定位、智慧能源、智慧农业、智慧养老等细分行业的产品服务,为合作伙伴提供产品快速上架通达省市的渠道。
互联网厂商主要包括阿里巴巴、腾讯、百度、京东等企业,这类企业在生态构筑和 AI 技术上有优势。如阿里云提供云管边端等基础产品接入及技术赋能、行业解决方案合作与实施、软硬件销售、营销推广、需求对接等快速商业变现通道。
IT 厂商主要包括浪潮、IBM、中国通服等企业,这类企业在 IT 方面有深刻理解。如用友利用物联网、AI、数字孪生等技术搭建的平台,拥有精智物联平台、精智云盒、精智时序数据库YonTimesDB+流式计算引擎、精智数据魔方、精智工业大脑等产品。
工业厂商则包括富士康、三一集团、施耐德电气、西门子、徐工集团等工业企业为主,平台以工业垂直能力为主。如通用电气是连接机器、数据、人员以及其他资产,使用分布式计算、大数据分析、资产数据管理和 M2M 通信的领先技术,提供广泛的工业微服务,使企业能够提供生产力。
物联网厂商平台主要根植于物联网时代,为物联网而生的平台企业,主要包括创通联达、联想懂的通信、涂鸦智能、小匠物联、萤石云等。如联想采用互联网云平台架构设计,依托物联网、机器视觉识别等技术,接入感知设备采集用户侧数据,建立统一的数据中心和设备管理中心,形成统一的应用服务中台,提升了设备状态感知。
新锐企业大多由 IT、OT、CT 领域经验丰富的专家建立,往往专注在某个领域。如瀚云工业物联网平台面向制造业数字化、网络化、智能化需求,构建基于海量数据采集、汇聚、分析的服务体系,支撑制造资源泛在连接、d性供给、高效配置。
2021年12月1日,亚马逊云 科技 在2021 re:Invent全球大会上宣布推出Amazon IoT TwinMaker,可以让开发人员更加轻松、快捷地创建现实世界的数字孪生,如楼宇、工厂、工业设备和生产线。
数字孪生是物理系统的虚拟映射,可根据其所代表的现实世界对象的结构、状态和行为定期更新。Amazon IoT TwinMaker让开发人员可以轻松汇集来自多个来源(如设备传感器、摄像机和业务应用程序)的数据,并将这些数据结合起来创建一个知识图谱,对现实世界环境进行建模。客户可以通过Amazon IoT TwinMaker,使用数字孪生来构建反映现实世界的应用程序,提高运营效率并减少停机时间。使用Amazon IoT TwinMaker无需预付费用,客户只需为使用的服务付费。
开发人员可以将Amazon IoT TwinMaker连接到设备传感器、视频源和业务应用程序等数据源,快速开始构建设备、装置和流程的数字孪生。为方便从各种数据源收集数据,Amazon IoT TwinMaker包含适用于Amazon IoT SiteWise、Amazon Kinesis Video Streams和Amazon S3的内置连接器(客户也可以为Amazon Timestream或Snowflake等数据源添加自己的连接器)。
Amazon IoT TwinMaker会自动创建一个知识图谱,整合并理解所连接数据源的关系,因此它可以使用被映射系统的实时信息更新数字孪生。客户可以将现有的3D模型(例如CAD和BIM文件、点云扫描等)直接导入Amazon IoT TwinMaker,轻松创建物理系统(例如楼宇、工厂、设备、生产线等)的3D视图,并将知识图谱中的数据叠加到3D视图上,创建数字孪生。
数字孪生创建完毕后,开发人员就可以使用适用于Amazon Managed Grafana的Amazon IoT TwinMaker插件创建基于Web的应用程序,在工厂 *** 作员和维护工程师用于监控和检查设施和工业系统的设备上,即可显示该应用程序的数字孪生。例如,开发人员可以通过将来自工厂设备传感器的数据与运行中的各种机器的实时视频以及这些机器的维护 历史 相关联,创建金属加工厂的虚拟映射。然后,开发人员可以设置规则,在检测到工厂熔炉中的异常情况(例如温度已超过阈值)时向工厂 *** 作员发出警报,并在工厂 3D 模型的熔炉实时视频中显示这些异常,这可以帮助 *** 作员在熔炉发生故障之前快速做出预测性维护决策。
亚马逊云 科技 IoT总经理Michael MacKenzie表示:“客户对有机会使用数字孪生来改善其运营和流程感到兴奋,但为不同使用场景创建数字孪生和自定义应用程序所涉及的工作复杂且昂贵,令大多数企业望而却步。Amazon IoT TwinMaker包括大多数客户构建数字孪生模型所需的内置功能,例如连接不同来源的数据,建模物理环境,以及可视化具有空间维度的数据。Amazon IoT TwinMaker的推出让更多客户可以全面了解他们的工业设备、设施和流程,实时监控和优化其运营的各个环节。”
Amazon IoT TwinMaker现已在美国东部(弗吉尼亚北部)、美国西部(俄勒冈)、亚太地区(新加坡)和欧洲(爱尔兰)区域提供预览,其他区域也将很快推出。
目前,已有一些企业使用了Amazon IoT TwinMaker进行数字化升级。
开利(Carrier Global)是一家建筑与冷链解决方案提供商。“通过我们的Abound平台,我们可以从各种系统和传感器中汇总楼宇性能数据,让客户实时了解其互联空间。为物业主和运营商提供数字孪生以增强该平台一直是我们的首要任务。”开利数字化和云高级总监Dan Levine表示:“然而,内部开发这一能力并非易事,面临着成本高昂、进展缓慢等一系列问题。通过Amazon IoT TwinMaker,我们发现了可以显著加快Abound平台技术战略的关键推动力。Amazon IoT TwinMaker将帮助我们的开发团队专注于快速创建差异化的客户成果,既不用将大量精力投入到繁重的数字孪生数据抽象工作中,也无需向我们的解决方案添加3D可视化。”
另一个典型案例是埃森哲。制造业的数字化转型对埃森哲的客户而言是一个巨大的机会,但他们经常会面临零散、孤立和非结构化工业数据的挑战,导致许多概念验证无法扩展。埃森哲Industry X行业数字制造与运营全球技术主管Maikel van Verseveld认为:“我客户希望在开始并扩展他们的数字化制造之旅时,拥有能够快速应对这些挑战的工具。通过Amazon IoT TwinMaker,他们现在可以轻松地创建数字孪生,从不同的 IT 和 OT 系统中获得更加情境化、数据驱动和实时的制造运营视图,从而让最终用户可以做出更好的决策并优化运营。通过埃森哲与亚马逊云 科技 紧密协作的团队,我们已经能够开始借助Amazon IoT TwinMaker为客户带来价值。”
关于亚马逊云 科技
超过15年以来,亚马逊云 科技 (Amazon Web Services)一直以技术创新、服务丰富、应用广泛而享誉业界。亚马逊云 科技 一直不断扩展其服务组合以支持几乎云上任意工作负载,目前提供超过200项全功能的服务,涵盖计算、存储、数据库、网络、数据分析、机器学习与人工智能、物联网、移动、安全、混合云、虚拟现实与增强现实、媒体,以及应用开发、部署与管理等方面;基础设施遍及25个地理区域的81个可用区(AZ),并已公布计划在澳大利亚、加拿大、印度、印度尼西亚、以色列、新西兰、西班牙、瑞士和阿联酋新建9个区域、27个可用区。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)