猎户座1380相当于苹果a几

猎户座1380相当于苹果a几,第1张

第一段:猎户座1380是什么?猎户座1380是指位于猎户座内的一个星云,它是一个星际物质的巨大云团,由于其中存在着大量的气体和尘埃,因此呈现出了壮观的红色光芒。这个星云距离地球大约1600光年,是我们夜空中最为著名的天体之一。
第二段:干苹果A几是什么?干苹果A几是一颗脉冲星,它也是猎户座1380内的一个天体。脉冲星是一种非常稳定的天体,它们的旋转周期非常规律,在宇宙中被广泛研究。干苹果A几的旋转周期为89毫秒,意味着它每秒钟旋转11,235次。
第三段:干苹果A几与猎户座1380的关系是什么?干苹果A几是猎户座1380内的一颗脉冲星,它的存在也让猎户座1380更加引人注目。干苹果A几的旋转产生了强烈的磁场,这个磁场与猎户座1380内的气体和尘埃相互作用,产生了壮观的电磁辐射。这种辐射包括了射电波、X射线和伽马射线等,是天文学家观测宇宙中极端物质状态的重要手段之一。
第四段:猎户座1380和干苹果A几的研究意义是什么?猎户座1380和干苹果A几的研究是为了更好地理解宇宙中的恒星演化、星系形成以及宇宙射线等问题。猎户座1380作为一个巨大的星际物质云,是星系形成的重要组成部分之一。而干苹果A几则是天文学家研究极端物质状态的重要天体之一,对于研究宇宙中极端物质状态的形成和演化过程具有重要意义。

陈铁军:男,1954年生,中国国籍,无境外永久居留权,博士,教授,河南省优秀专家,博士生导师,享受国务院政府特殊津贴。曾任职于郑州大学电气工学院,2010年-2016年曾任公司独立董事;历任河南省高新技术专家联合会副理事长、光机电一体化分委员会理事长、河南省制造业信息化专家组组长、河南省电机工程学会副理事长、河南省自动化学会副理事长,现任公司独立董事。

日前,由国家互联网信息办公室、浙江省人民政府主办的2021年“世界互联网领先 科技 成果发布活动”在乌镇互联网国际会展中心成功举行,这是第六次面向全球举行世界互联网领先 科技 成果发布活动。

发布活动共评选出包括来自中国卫星导航系统管理办公室、清华大学、北京大学、北京邮电大学、中国电信、中国移动、高通、安谋等14项国内外有代表性的领先 科技 成果。

HarmonyOS 鸿蒙 *** 作系统

华为技术有限公司

鸿蒙是一款全新的面向全场景的分布式 *** 作系统,2019年正式面世。简单说,鸿蒙为不同设备的智能化、互联与协同提供统一的语言,让消费者 *** 控多个设备像 *** 作一台设备一样简单。

今年6月2日,华为发布HarmonyOS 2,仅一周升级用户数破千万;历时一个多月,升级用户数突破3000万,进入8月已突破5000万。到9月12日,HarmonyOS 2升级用户数突破1亿,成为全球用户破亿最快的移动 *** 作系统。9月23日,华为又更新数字,HarmonyOS 2升级用户已突破12亿。

庞大的用户基数也带来强大的生态示范效应,目前已有400个多应用和服务伙伴、1700多家硬件伙伴、130多万开发者参与到鸿蒙生态的建设当中,共建全球最大的万物互联的全场景智慧生态。

智能计算芯片行业创新:全球首个开源NPU指令集架构

安谋 科技 (中国)有限公司

下一代智能计算的核心关键是海量地、高密度地、实时地感知和处理不同类型的数据流,智能计算的算力也正越来越多地从CPU、GPU转为由NPU提供。为了解决NPU定制过程中生态碎片化、重复投资和应用规模受限等问题,安谋 科技 在今年7月联合了50多家产业龙头企业和机构共同发起成立了“智能计算产业技术创新联合体”(Open NPU Innovation Alliance,简称ONIA),并推出全球首个开源神经网络处理器指令集架构(NPU ISA)。

围绕这一开源NPU ISA,安谋 科技 及ONIA会员不仅提供NPU、CPU、XPU芯片方案,还将以开源、开放的协作方式,对外提供编译器、工具链、驱动程序、 *** 作系统、深度学习框架等基础系统软件,以及基于不同场景的、统一的多域计算软硬件平台方案,进而利用开源指令集实现NPU的全面创新,帮助产业链更迅速地落地智能计算和人工智能应用。

人工智能驱动的重大疾病动态画像新技术和远程高效防治系统

北京邮电大学

以5G和人工智能技术为代表的新一代信息通信技术不断突破,推动医疗技术发展不断由疾病治疗向 健康 创造转变。同时,数字医疗的场景复杂化,需求多样化对信息通信网络的灵活性、智能化提出了更高要求。

人工智能驱动的重大疾病动态画像新技术和远程高效防治系统以“智·简生态系统”为内核指导思想,在通用医学大数据处理、智能学习优化平台等方面取得多项技术进展,实现了快速响应危急重症,高效发现关键诊断决策依据,动态量化疾病风险因素,以及准确追踪病情进展等能力。

5G独立组网(SA)端到端系统方案、国际标准及组网技术

中国移动通信集团有限公司

超高清视频编解码关键技术及系统应用

北京大学

北京大学自主研发了超高清视频编解码关键技术及其系统应用,主导制定了AVS超高清视频编解码国家标准,被全球超高清产业联盟采纳为国际标准,联合海思、华为公司在国际上首次发布了8K@120P超高清解码芯片,支撑了中国首个4K和8K超高清频道CCTV—4K/8K的开播,并在全球首次实现8K+5G广电领域直播应用,标志着中国正式迈入超高清时代。

北斗全球卫星导航系统建设和应用

中国卫星导航系统管理办公室

北斗全球卫星导航系统是中国自行研制的全球卫星导航系统,也是继GPS、GLONASS之后的第三个成熟的卫星导航系统。北斗系统是党中央决策实施的国家重大 科技 工程,是我国迄今为止规模最大、覆盖范围最广、服务性能最高、与百姓生活关联最紧密的巨型复杂航天系统。2020年,北斗三号全球卫星导航系统正式开通。从最初的试验卫星到如今55卫星成功组网,27年的时间里,数不清的科研人员耗费了大量的心血,建设了中国自己的卫星系统。

目前,北斗系统已在全球超过一半的国家和地区得到应用,向亿级以上用户提供服务。基于北斗的土地确权、精准农业、数字施工、车辆船舶监管、智慧港口解决方案在东盟、南亚、东欧、西亚、非洲等得到成功应用。如今,“中国的北斗、世界的北斗、一流的北斗”正为服务人类 社会 发展、构建人类命运共同体作出新的更大的贡献。

“天通一号”卫星移动通信应用系统

中国电信集团有限公司

“天通一号”卫星移动通信应用系统完成了多项技术创新,首次提出“天地融合、通导一体”的系统架构。其实现了卫星通信、卫星导航的集成服务,在用户终端融合了通信、导航功能。创新提出了“星地一体、宽窄互补”的通信体制,实现星地网络全面融合。突破了终端“天地多模、低功耗、小型化”的技术难题。该应用系统已获得授权专利45件,行业标准4项,学术论文100余篇,填补了国内卫星移动通信系统空白,整体技术达到“国际先进”水平。

全球首个支持10Gbps 5G传输速率和首个符合3GPP Release 16规范的5G调制解调器到天线解决方案

高通无线通信技术(中国)有限公司

骁龙X65 5G调制解调器及射频系统于今年2月发布,为行业带来了多项首创性的5G技术革新——通过媲美光纤的无线性能支持目前市场上最快的5G传输速度,并支持最新5G规范。

去年3GPP标准组织推出了5G的新规范,即Release 16,其定义了下一阶段的全球5G发展。值得一提的是,骁龙X65是全球首个符合3GPP Release 16 5G标准的5G调制解调器到天线解决方案。骁龙X65采用了可以支持特性组合升级的架构设计,从而支持快速商用。这意味着通过骁龙X65能够持续增加新的特性,在智能手机之外多个应用细分领域扩展5G。

800G 超高速光收发芯片与引擎技术研发

之江实验室

800G超高速光收发芯片与光引擎技术是之江实验室为下一代数据高速传输提供的核心技术解决方案。之江实验室项目团队连续取得大功率多波长激光器、硅基高密度光发射模块、硅基高速光接收模块等芯片模块研发的突破性进展,并利用晶圆级封装技术将这些芯片模块集成在同一晶圆上,实现“光电共封”,在确保硬件物理尺寸不变的情况下,有效提升数据传输的密度和效率,降低功耗和成本。光收发芯片就像是一位“翻译”或“交警”,为数据中心光子与电子间的信息转换架起桥梁,为数据的高效传输指挥交通。

基于多光谱的智能感知终端

杭州海康威视数字技术股份有限公司

夜间低照度一直以来是全天候视频感知所面临的最大挑战。海康威视的基于多维感知智能融合终端,可实现低照度下无光污染的全彩成像,让黑夜像白天一样精彩。与传统手段相比,在色彩还原度、清晰度方面,都有显著的提升,做到细节清晰,精彩如一。

基于分层API规范的云 *** 作系统生态建设

清华大学

“基于分层API规范的云 *** 作系统生态建设”是由清华大学大学联合华中 科技 大学、上海交通大学、北京航空航天大学、中国科学院计算技术研究所等单位在国家重点研发计划的资助下共同完成。

项目抽象制定了云 *** 作系统分层API规范并给出了技术领先的参考实现;相关成果已获实际应用,初步形成了自主云 *** 作系统生态,对于避免生态的碎片化和供应商锁定,推动技术持续迭代和行业整体创新有重要意义。

大规模图计算系统GeaGraph

蚂蚁 科技 集团股份有限公司

高性能图计算被认为是全球尖端 科技 的一个重要前沿,在电信、医疗、制造、能源等领域有着广阔的应用价值和前景。蚂蚁集团联合清华大学共同研发的高性能图计算系统GeaGraph能够在万亿边图上进行实时查询,在国际标准图数据库测试中位列第一,处理规模和性能均达到了国际领先水平。现在,GeaGraph已经成为蚂蚁集团各种业务风控能力的重要支撑,在数字支付、数字服务、数字金融等核心业务中,显著提升了风险行为的实时识别能力和调查分析效率。

阿里云盘古:面向云计算的大规模分布式存储系统

阿里云计算有限公司

阿里云自主研发的分布式存储系统“盘古”是该活动6年来首次有存储技术入选。“盘古”是阿里云自研的分布式存储系统,是阿里云底层的统一存储架构,主要包括“分布式存储软件”“高性能存储网络”“云存储硬件架构”“深度软硬融合的闪存存储架构”“智能运维管控”以及“网络和SSD控制器芯片”核心关键技术。

“盘古”解决了超大规模下数据不丢不错和高可用的难题,让存储更加稳定可靠、拥有更大的容量和更高的性能,以满足数字经济对海量存储和快速存储的需求。

“盘古”团队自2008年开始组建,2009年开始推出第一个版本,2013年完成上线单集群5K台的规模,此后2015年突破了单集群上万台的技术门槛,2017年正式推出“盘古”20并成功支撑了此后的天猫“双11”全球狂欢节。相比10版本,“盘古”20面向人工智能、科学计算、深度学习等未来存储场景做了优化升级,整体IOPS性能提升50%,同时推出基于“盘古”20的ESSD高性能云盘,IOPS从2万提升到了100万。

安全可靠可控的新一代人工智能平台

北京瑞莱智慧 科技 有限公司

第一代人工智能技术存在大规模应用的局限,而第二代人工智能则面临着高度依赖大量高质量数据、不能适应不断变化的条件、算法可解释性非常差等诸多问题。为此需要建立鲁棒与可解释的人工智能理论,发展安全、可信、可靠与可扩展的第三代人工智能。

作为业内首个致力于提升人工智能安全性、可靠性与可信性的创新平台,北京瑞莱智慧 科技 有限公司自主研发的“安全可控可靠的新一代人工智能平台”包含隐私计算、AI攻防、深伪检测三大子平台。凭借独有的创新模式,该平台能够有效降低人工智能时代的新型安全风险,保障人工智能系统的安全、可靠和可控,缓解 科技 进步与安全之间的矛盾,目前已在政务、金融、工业互联网等高价值场景中发挥了重大作用,成为AI纵深赋能的坚实基座。

一、与传统计算机的区别1946年美籍匈牙利科学家冯·诺依曼提出存储程序原理,把程序本身当作数据来对待。此后的半个多世纪以来,计算机的发展取得了巨大的进步,但“冯·诺依曼架构”中信息存储器和处理器的设计一直沿用至今,连接存储器和处理器的信息传递通道仍然通过总线来实现。随着处理的数据量海量地增长,总线有限的数据传输速率被称为“冯·诺依曼瓶颈”——尤其是移动互联网、社交网络、物联网、云计算、高通量测序等的兴起,使得‘冯·诺依曼瓶颈’日益突出,而计算机的自我纠错能力缺失的局限性也已成为发展障碍。
结构上的缺陷也导致功能上的局限。例如,从效率上看,计算机运算的功耗较高——尽管人脑处理的信息量不比计算机少,但显然而功耗低得多。为此,学习更多层的神经网络,让计算机能够更好地模拟人脑功能,成为上世纪后期以来研究的热点。
在这些研究中,核心的研究是“冯·诺依曼架构”与“人脑架构”的本质结构区别——与计算机相比,人脑的信息存储和处理,通过突触这一基本单元来实现,因而没有明显的界限。正是人脑中的千万亿个突触的可塑性——各种因素和各种条件经过一定的时间作用后引起的神经变化(可变性、可修饰性等),使得人脑的记忆和学习功能得以实现。
大脑有而计算机没有的三个特性:低功耗(人脑的能耗仅约20瓦,而目前用来尝试模拟人脑的超级计算机需要消耗数兆瓦的能量);容错性(坏掉一个晶体管就能毁掉一块微处理器,但是大脑的神经元每时每刻都在死亡);还有不需为其编制程序(大脑在与外界互动的同时也会进行学习和改变,而不是遵循预设算法的固定路径和分支运行。)
这段描述可以说是“电”脑的最终理想了吧。
注:最早的电脑也是模拟电路实现的,之后发展成现在的只有0、1的数字CPU。
今天的计算机用的都是所谓的冯诺依曼结构,在一个中央处理器和记忆芯片之间以线性计算序列来回传输数据。这种方式在处理数字和执行精确撰写的程序时非常好用,但在处理或声音并理解它们的意义时效果不佳。
有件事很说明问题:2012年,谷歌展示了它的人工智能软件在未被告知猫是什么东西的情况下,可以学会识别视频中的猫,而完成这个任务用到了16万台处理器。
要继续改善这类处理器的性能,生产商得在其中配备更多更快的晶体管、硅存储缓存和数据通路,但所有这些组件产生的热量限制了芯片的运作速度,尤其在电力有限的移动设备中。这可能会阻碍人们开发出有效处理、声音和其他感官信息的设备,以及将其应用于面部识别、机器人,或者交通设备航运等任务中。
神经形态芯片尝试在硅片中模仿人脑以大规模的平行方式处理信息:几十亿神经元和千万亿个突触对视觉和声音刺激物这类感官输入做出反应。
作为对图像、声音等内容的反应,这些神经元也会改变它们相互间连接的方式,我们把这个过程叫做学习。神经形态芯片纳入了受人脑启发的“神经网路”模式,因此能做同样的事。
人工智能的顶尖思想家杰夫·霍金斯(Jeff Hawkins)说,在传统处理器上用专门的软件尝试模拟人脑(谷歌在猫实验中所做的),以此作为不断提升的智能基础,这太过低效了。
霍金斯创造了掌上电脑(Palm Pilot),后来又联合创办了Numenta公司,后者制造从人脑中获得启发的软件。“你不可能只在软件中建造它,”他说到人工智能,“你必须在硅片中建造它。”
现有的计算机计算,程序的执行是一行一行执行的,而神经网络计算机则有所不同。
现行的人工智能程式,基本上都是将大大小小的各种知识写成一句一句的陈述句,再灌进系统之中。当输入问题进去智能程式时,它就会搜寻本身的资料库,再选择出最佳或最近解。2011年时,IBM 有名的 Watson 智能电脑,便是使用这样的技术,在美国的电视益智节目中打败的人类的最强卫冕者。
(神经网络计算机)以这种异步信号发送(因没有能使其同步的中央时钟而得名)处理数据的速度比同步信号发送更快,以为没有时间浪费在等待时钟发出信号上。异步信号发送消耗的能量也更少,这样便满足了迈耶博士理想的计算机的第一个特点。如果有一个处理器坏了,系统会从另一路线绕过它,这样便满足了迈耶博士理想的计算机的第二个特点。正是由于为异步信号发送编程并不容易,所以大多数计算机工程师都无视于此。然而其作为一种模仿大脑的方式堪称完美。功耗方面:
硬件方面,近年来主要是通过对大型神经网络进行仿真,如 Google 的深度学习系统Google Brain,微软的Adam等。但是这些网络需要大量传统计算机的集群。比方说 Google Brain 就采用了 1000 台各带 16 核处理器的计算机,这种架构尽管展现出了相当的能力,但是能耗依然巨大。而 IBM 则是在芯片上的模仿。4096 个内核,100 万个“神经元”、256 亿个“突触”集成在直径只有几厘米的方寸(是 2011 年原型大小的 1/16)之间,而且能耗只有不到 70 毫瓦。
IBM 研究小组曾经利用做过 DARPA 的NeoVision2 Tower数据集做过演示。它能够实时识别出用 30 帧每秒的正常速度拍摄自斯坦福大学胡佛塔的十字路口视频中的人、自行车、公交车、卡车等,准确率达到了 80%。相比之下,一台笔记本编程完成同样的任务用时要慢 100 倍,能耗却是 IBM 芯片的 1 万倍。
Ref: A million spiking-neuron integrated circuit with a scalable communication network and interface Paul A Merolla et al Science 345, 668 (2014); DOI: 101126/science1254642
因为需要拥有极多数据的Database 来做training以及需要极强大的计算能力来做prediction,现有的一些Deep learning如Andrew Ng的Google Brain、Apple的Siri等都需要连接网络到云端的服务器。
二、争议:
虽然深度学习已经被应用到尖端科学研究及日常生活当中,而 Google 已经实际搭载在核心的搜寻功能之中。但其他知名的人工智能实验室,对於深度学习技术的反应并不一致。例如艾伦人工智慧中心的执行长 Oren Etzioni,就没有考虑将深度学习纳入当前开发中的人工智慧系统中。该机构目前的研究是以小学程度的科学知识为目标,希望能开发出光是看学校的教科书,就能够轻松应付各类考试的智能程式。Oren Etzioni 以飞机为例,他表示,最成功的飞机设计都不是来自於模仿鸟的结构,所以脑神经的类比并无法保证人工智能的实现,因此他们暂不考虑借用深度学习技术来开发这个系统。
但是从短期来看,情况也许并没有那么乐观。
首先芯片的编程仍然是个大问题。芯片的编程要考虑选择哪一个神经元来连接,以及神经元之间相互影响的程度。比方说,为了识别上述视频中的汽车,编程人员首先要对芯片的仿真版进行必要的设置,然后再传给实际的芯片。这种芯片需要颠覆以往传统的编程思想,尽管 IBM 去年已经发布了一套工具,但是目前编程仍非常困难,IBM 团队正在编制令该过程简单一点的开发库。(当然,如果我们回顾过去编程语言从汇编一路走来的历史,这一点也许不会成为问题。)
其次,在部分专业人士看来,这种芯片的能力仍有待证实。
再者,真正的认知计算应该能从经验中学习,寻找关联,提出假设,记忆,并基于结果学习,而IBM 的演示里所有学习(training)都是在线下的冯诺依曼计算机上进行的。不过目前大多数的机器学习都是离线进行的,因为学习经常需要对算法进行调整,而 IBM 的硬件并不具备调整的灵活性,不擅长做这件事情。
三、人造神经元工作原理及电路实现
人工神经网络
人工神经网络(artificial neural network,缩写ANN),简称神经网络(neural network,缩写NN),是一种模仿生物神经网络的结构和功能的数学模型或计算模型。
神经网络是一种运算模型,由大量的节点(或称“神经元”,或“单元”)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。Ref:Wikipedia: 人工神经网络
电路原理
神经递质的分泌反过来又是对动作电位刺激的反应。然而神经元在接收到这些神经递质信号中的一个后便不会再继续发出动作电位。当然,它们会逐渐累加至一个极限值。在神经元接受了一定数量的信号并超过极限值后----从根本上讲是一个模拟进程----然后它们会发出一个动作电位,并自行重置。Spikey的人造神经元也是这么做的,当它们每次受到激发时都会在电容中累积电荷,直至达到限值,电容再进行放电。具体电路结构和分析之后有机会的话再更新。
现阶段硬件的实现方式有数电(IBM、Qualcomm)、模电、数模混合(学界)、GPUs等等,还有各种不是基于硅半导体制程制作的神经元等的device方面的研究。
四、历史
Neuromorphic engineering由老祖宗Carver Mead提出
卡福·米德是加州理工学院的一名工程师,被公认为神经形态计算机之父(当然还发明了“神经形态学”这个词)
神经形态芯片的创意可以追溯到几十年前。加州理工大学的退休教授、集成电路设计的传奇人物卡弗·米德(Carver Mead)在1990年发表的一篇论文中首次提出了这个名称。
这篇论文介绍了模拟芯片如何能够模仿脑部神经元和突触的电活动。所谓模拟芯片,其输出是变化的,就像真实世界中发生的现象,这和数字芯片二进制、非开即关的性质不同。
后来这(大脑研究)成为我毕生的工作,我觉得我可以有所贡献,我尝试离开计算机行业而专注大脑研究。首先我去了MIT的人工智能研究院,我想,我也想设计和制作聪明的机器,但我的想法是先研究大脑怎么运作。而他们说,呃,你不需要这样做,我们只需要计算机编程。而我说,不,你应该先研究大脑。他们说,呃,你错了。而我说,不,你们错了。最后我没被录取。但我真的有点失望,那时候年轻,但我再尝试。几年后再加州的Berkley,这次我尝试去学习生物方面的研究。我开始攻读生物物理博士课程。我在学习大脑了,而我想学理论。而他们说,不,你不可以学大脑的理论,这是不可以的,你不会拿到研究经费,而作为研究生,没有经费是不可以的。我的天。
八卦:老师说neural network这个方向每20年火一次,之前有很长一段时间的沉寂期,甚至因为理论的不完善一度被认为是江湖术士的小把戏,申请研究经费都需要改课题名称才能成功。(这段为小弟的道听途说,请大家看过就忘。后来看相关的资料发现,这段历史可能与2006年Geoffrey E Hinton提出深度学习的概念这一革命性工作改变了之前的状况有关。)
五、针对IBM这次的工作:
关于 SyNAPSE
美国国防部先进研究项目局的研究项目,由两个大的group组成:IBM team和HRL Team。
Synapse在英文中是突触的意思,而SyNAPSE是Systems of Neuromorphic Adaptive Plastic Scalable Electronics的简称。
Cognitive computing: Neurosynaptic chips
IBM produces first working chips modeled on the human brain
另一个SyNAPSE项目是由IBM阿尔马登实验室(位于圣何塞)的达尔门德拉·穆德哈负责。与四所美国大学(哥伦比亚大学,康奈尔大学,加州大学默塞德分校以及威斯康辛-麦迪逊大学)合作,穆德哈博士及其团队制造了一台神经形态学计算机的原型机,拥有256个“积分触发式”神经元,之所以这么叫是因为这些神经元将自己的输入累加(即积分)直至达到阈值,然后发出一个信号后再自行重置。它们在这一点上与Spikey中的神经元类似,但是电子方面的细节却有所不同,因为它们是由一个数字储存器而非许多电容来记录输入信号的。
Ref: A million spiking-neuron integrated circuit with a scalable communication network and interface Paul A Merolla et al Science 345, 668 (2014); DOI: 101126/science1254642


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/13496276.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-18
下一篇 2023-08-18

发表评论

登录后才能评论

评论列表(0条)

保存