国内医生资源短缺,看病难等问题时刻困扰着我们每个人,在这样的环境下发展可穿戴医疗设备十分必要,市面上也确实充斥着林林总总的可穿戴医疗设备。然而,大部分可穿戴医疗产品只是打着“医疗”的幌子招摇撞骗,实际上没有多少“医疗”和“保健”的作用,在设计中也存在诸多缺陷,无法将真实有效地数据反馈给用户。对于目前可穿戴医疗设备市场,有哪些问题亟待解决?又有哪些迷局需要突破?
功耗壁垒如何破?
可穿戴医疗设备和众多可穿戴设备 一样存在着一项致命缺陷——电池续航能力差。解决电池续航问题的关键无疑是增加电池容量以及降低设备功耗,而以目前的技术来说,配置大容量电池则意味着需 要增加设备的体积,对此相信大家很容易权衡做出选择。因此,在攻克系统低功耗挑战方面,低功耗的MCU能解决可穿戴医疗设备的能效问题,并有效的延长电池 寿命。
由于MCU是大多数可穿戴设备的核心,因此利用低功耗MCU在解决可穿戴医疗设备续航问题时,还需保证设备的性能以及模拟集成度。
目前,可穿戴市场上主要有两种 MCU方案:第一种是基于ARM Cortex-M处理器,另一种是基于Cortex-A系列。Cortex-A系列MCU在基于Android的可穿戴设备上或是最佳选择,并且 Cortex-A系列能实现更高的性能,但是此方案难以满足可穿戴设备的低功耗要求。因此,在大部分厂商更倾向于选择Cortex-M核MCU。 Silicon Labs美洲区市场营销总监Raman Sharma表示,基于ARM Cortex-M处理器的MCU为可穿戴产品提供了最佳的解决方案,是可穿戴医疗应用的理想选择。
Silicon Labs美洲区市场营销总监Raman Sharma
Raman进一步强调,目前的低 功耗MCU逐渐导入睡眠模式的设计,这一设计可让在非系统运作高峰期的大部分时间里处于低功耗睡眠状态,进一步降低装置整体功耗。Silicon Labs的EFM32 Gecko MCU系列产品是业内最节能的32位MCU,非常适合功耗敏感、电池供电的可穿戴应用。
Gecko MCU的低功耗传感器接口(LESENSE)和外设反射系统(PRS)对于可穿戴设备的超低功耗预算来说发挥了重要作用。即使当MCU在深度休眠模式 时,LESENSE接口也能自动的收集和处理传感器数据,这使得MCU能够尽可能长时间保持在低功耗模式,并且同时跟踪传感器状态和事件。PRS监视复杂 的系统级事件,并且允许不同的MCU外设之间进行自主通信,同时保持CPU尽可能长时间的处于节能休眠模式,从而降低了整体系统的能耗。此外,大多数 EFM32 MCU都拥有包括模数转换器和运算放大器在内的模拟前端。
存储器件封装难问题如何破?
便携式可穿戴医疗设备的创新大大促进了最小化半导体元件体积的需求。这些创新要求在有限的外形尺寸中存储更多的数据。要满足这一点,许多医疗设备设计人员转而采用创新型裸片存储器解决方案。
尽管裸片是存储器件体积最小的外 观形式,然而在处理、存储和装配时将面临巨大挑战。采用裸片的传统方式是向半导体供货商订购整块晶圆。但是,这就要求医疗设备制造商寻求切割晶圆及键合晶 圆的解决方案。对于一些制造商来说,这超出了他们的能力范围。虽然可将这些服务付费外包,但有一种替代解决方案是购买“框架内晶圆”——某种经过切割的晶 圆。将经切割的晶圆置于用金属框架支撑的粘性薄膜中交运。 通过订购这样的晶圆,医疗设备制造商将获得供分拣和贴装的小块裸片。
下一个挑战是如何将裸片电气连接 到应用中。传统的做法是用环氧树脂将裸片固化在电路板上,然后用焊线来电气连接裸片。这样裸片就被封装在一个保护性的环氧树脂外壳中。这可不是一件简单的 事,由于对裸片的放置精度有很高要求,需要特殊的设备。一种备用方案是使用“带凸块裸片”( bumped die )。这样的裸片已将其焊盘金属化,并将压焊点固定在焊盘上。可采用回流焊接技术将带凸块的裸片面朝下直接连接到PCB上。由于硅裸片和PCB的热膨胀 (CTE)系数不同,带凸块的裸片存在焊点剪切应变的风险。出于这种原因,带凸块的裸片通常在底部填充额外的粘结剂,以提供更坚固的机械连接并减少CTE 不匹配的影响。
采用裸片大小存储器件的最新解决 方案是芯片级封装(CSP)。CSP采用金属再分布层(RDL)将焊盘连接到接触面积更大的新区域,从而允许使用较大的焊珠。使用传统的晶圆加工工具在晶 圆级应用这一额外的金属RDL。通过介质层将RDL与裸片电气隔离,使之仅与裸片上原始的焊盘相连。然后,再在RDL上覆盖另一介质层,使新的较大的焊盘 裸露在外。较大的焊接接触面积增强了机械连接,无需像带凸块裸片那样在底部填充粘结剂。这样就得到了一个裸片大小的封装,能够将它如同任何其他表面贴装器 件那样装配到电路板上。Microchip Technology目前大量提供各种采用CSP的EEPROM和闪存器件。CSP封装提供对于便携式医疗应用至关重要的裸片级外形尺寸,同时攻克了使用 裸片的技术难题。
想要了解更多医疗电子设计资料,请关注《物联网核心技术之通信》专题
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)