人工神经网络(ArTIficial Neural Networks,ANNs),也简称为神经网络(NNs),是模拟生物神经网络进行信息处理的一种数学模型。它以对大脑的生理研究成果为基础,其目的在于模拟大脑的某些机理与机制,实现一些特定的功能。目前,人工神经网络已应用于很多领域。本章主要对人工神经网络的基本理论做一个全面简要的介绍。
神经网络的特点
神经网络的基本属性反映了神经网络特点,主要表现在:
1.并行分布式处理 神经网络具有高度的并行结构和并行实现能力,具有高速寻找优化解的能力,能够发挥计算机的高速运算能力,可能很快找到优化解。
2.非线性处理 人脑的思维是非线性的,故神经网络模拟人的思维也应是非线性的。这一特性有助于处理非线性问题。
3.具有自学习功能 通过对过去的历史数据的学习,训练出一个具有归纳全部数据的特定的神经网络,自学习功能对于预测有特别重要的意义。
4.神经网络的硬件实现 要使人工神经网络更快、更有效地解决更大规模的问题,关键在于其超大规模集成电路(V LSI)硬件的实现,即把神经元和连接制作在一块芯片上(多为CMOS)构成ANN,神经网络的VLSI设计方法近年来发展很快,硬件实现已成为ANN的一个重要分支。
神经网络的应用领域近些年来神经网络在众多领域得到了广泛的运用。在民用应用领域的应用,如语言识别、图像识别与理解、计算机视觉、智能机器人故障检测、实时语言翻译、企业管理、市场分析、决策优化、物资调运、自适应控制、专家系统、智能接口、神经生理学、心理学和认知科学研究等等;在军用应用领域的应用,如雷达、声纳的多目标识别与跟踪,战场管理和决策支持系统,军用机器人控制各种情况、信息的快速录取、分类与查询,导d的智能引导,保密通信,航天器的姿态控制等。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)