This application note provides an overview of the architectures. It includes links to application notes that provide more detail and a handy comparison table that compares the key features and characteristics.
Integrating ADCsIntegrating ADCs provide high resolution and can provide good line frequency and noise rejection. Having started with the ubiquitous ICL7106, these converters have been around for quite some time. The integrating architecture provides a novel yet straightforward approach to converting a low bandwidth analog signal into its digital representation. These type of converters often include built-in drivers for LCD or LED displays and are found in many portable instrument applications, including digital panel meters and digital multi-meters.
View Specification Table
FLASH ADCsFlash analog-to-digital converters, also known as parallel ADCs, are the fastest way to convert an analog signal to a digital signal. They are suitable for applications requiring very large bandwidths. However, flash converters consume a lot of power, have relatively low resolution, and can be quite expensive. This limits them to high frequency applications that typically cannot be addressed any other way. Examples include data acquisition, satellite communication, radar processing, sampling oscilloscopes, and high-density disk drives.
View Specification Table
Pipelined ADCsThe pipelined analog-to-digital converter (ADC) has become the most popular ADC architecture for sampling rates from a few megasamples per second (MS/s) up to 100MS/s+, with resolutions from 8 to 16 bits. They offer the resolution and sampling rate to cover a wide range of applications, including CCD imaging, ultrasonic medical imaging, digital receiver, base station, digital video (for example, HDTV), xDSL, cable modem, and fast Ethernet.
View Specification Table
SAR ADCSuccessive-approximation-register (SAR) analog-to-digital converters (ADCs) are frequently the architecture of choice for medium-to-high-resolution applications, typically with sample rates fewer than 5 megasamples per second (Msps). SAR ADCs most commonly range in resolution from 8 to 16 bits and provide low power consumption as well as a small form factor. This combination makes them ideal for a wide variety of applications, such as portable/battery-powered instruments, pen digitizers, industrial controls, and data/signal acquisition.
View Specification Table
Sigma Delta ADCSigma Delta analog-to-digital converters (ADCs) are used predominately in lower speed applications requiring a trade off of speed for resolution by oversampling, followed by filtering to reduce noise. 24 bit Sigma Delta converters are common in Audio designs, instrumentation and Sonar. Bandwidths are typically less than 1MHz with a range of 12 to 18 true bits.
View Specification Table
Two Step ADCTwo Step analog-to-digital converters (ADCs) are also known as subranging converters and sometimes referred to as multi-step or half flash (slower than Flash architecture). This is a cross between a Flash ADC and pipeline ADC and can achieve higher resolution or smaller die size and power for a given resolution are needed vs. a Flash ADC. Example MAX153.
Maxim Application Notes
- Understanding Flash ADCs
- Understanding Integrating ADCs
- Pipeline ADCs Come of Age
- Understanding SAR ADCs
- Demystifying Sigma-Delta ADCs
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)