1 前言
作为电动汽车的能量存储部件, 电池的功率密度、储电能力、安全性等不仅决定着电动车的行驶里程和行驶速度, 更关系到电动车的使用寿命及市场前景。目前, 电池在实际使用中普遍存在的问题是电荷量不足, 一次充电行驶里程难以满足实用要求。
另外, 用可测得的电池参数对电池荷电状态( SOC,S tate- O f- Charge)作出准确、可靠的估计, 也一直是电动汽车和电池研究人员关注并投入大量精力的研究课题。因此有必要建立动力电池测试平台, 利用该平台对电池相关参数进行全面、精确的测量, 实现电池性能试验, 工况模拟和算法研究, 确定最合理的充放电方式及更为精确的SOC 估算方法, 从而合理的分配和使用电池有限的能量, 尽可能延长电池的使用寿命, 进一步降低电动汽车的整车成本。与以往的电池测试系统相比, 该测试平台可全面监测电池相关参数, 并加入充放电能量的计量, 可从能量的角度对电池的性能进行描述, 从能量状态( SOE,Sta te- O f- Energy)的角度对电池的使用效率进行分析。系统硬件电路具有电池过电压、欠电压保护及均衡功能, 可对单体电池进行监视和保护, 减小电池间的不一致性。在充放电设备与上位机之间建立通信, 控制充电机按照编程指令改变控制策略和输出电流, 检验充放电电流大小、方式和环境条件对电池的电荷量及使用寿命的影响。
2 测试平台结构
测试平台的结构如图1所示, 以单片机为核心的电池数据采集系统直接对电池组的单体电压、总电压、温度、电流、充放电容量、充放电能量等信息进行精确测量, 并通过RS232总线将数据发送到上位机。由微型计算机构成的上位机监控系统, 实时显示并记录接收到的测试数据, 对数据进行分析, 监控测试系统工作状态。另外可根据具体的实验要求,控制充放电设备按照编程指令输出电流, 模拟电池在某些特定条件下的使用情况。充放电设备实现电池组的充放电, 完成电池和电网之间能量的双向流动, 与监控PC 机通过CAN 通信, 可接收监控PC机的编程控制指令。文中主要完成数据采集系统、上位机监控系统的设计并实现各部分之间的实时通讯。
图1 平台结构图
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)