5nm是物理极限,芯片发展将就此结束?

5nm是物理极限,芯片发展将就此结束?,第1张

摩尔定律是指IC上可容纳的晶体管数目,约每隔18个月便会增加一倍,性能也将提升一倍。然而事情的发展总归会有一个权限,5nm则是硅芯片工艺的极限所在,事实上,随着10nm、7nm芯片研发消息不断报出,人们也开始担心硅芯片极限的逐渐逼近,会不会意味着摩尔定律最终失效,进而导致半导体行业停滞不前。

为什么说5nm是现有芯片工艺的极限呢?

 

 

Source:源极 Gate:栅极 Drain:漏极

 

这个主要是由于现有芯片制造的原材料是“晶元”、或者说硅片,也就是硅,所以我们才说硅芯片。一块看起来非常小的芯片,实际上已经整合了数以亿计的晶体管,晶体管简单而言可以看作是一个可控的电子开关,晶体管由源极、漏极和位于他们之间的栅极所组成,电流从源极流入漏极,栅极则起到控制电流通断的作用,从而产生0 1数字信号,在目前的芯片中,连接晶体管源极和漏极的是硅元素。

 

 

 

 

然而随着晶体管尺寸的不断缩小,源极和栅极间的沟道也在不断缩短,当沟道缩短到一定程度的时候,量子隧穿效应就会变得极为容易,换言之,就算是没有加电压,源极和漏极都可以认为是互通的,那么晶体管就失去了本身开关的作用,因此也没法实现逻辑电路

 

从现在来看,10nm工艺是能够实现的,7nm也有了一定的技术支撑,而5nm则是现有半导体工艺的物理极限,那么芯片的发展就此结束了吗?

 

其实问题分析到这,大家也应该明白了,不是硅片发展到头了,而是硅芯片的发展到了极限了,要突破这个极限的话,只能靠使用其它材料才代替硅了。
 

石墨烯

 

 

 

 

近年来,石墨烯被炒得很热,它具有很强的导电性、可弯折、强度高,这些特性可以被应用于各个领域中,甚至具有改变未来世界的潜力,也有不少人把它当成是取代硅,成为未来的半导体材料。

 

碳纳米管

 

 

 

 

碳纳米管和近年来非常火爆的石墨烯有一定联系,零维富勒烯、一维碳纳米管、二维石墨烯都属于碳纳米材料家族,并且彼此之间满足一定条件后可以在形式上转化。碳纳米管是一种具有特殊结构的一维材料,它的径向尺寸可达到纳米级,轴向尺寸为微米级,管的两端一般都封口,因此它有很大的强度,同时巨大的长径比有望使其制作成韧性极好的碳纤维

 

碳纳米管和石墨烯在电学和力学等方面有着相似的性质,有较好的导电性、力学性能和导热性,这使碳纳米管复合材料在超级电容器太阳能电池显示器、生物检测、燃料电池等方面有着良好的应用前景。此外,掺杂一些改性剂的碳纳米管复合材料也受到人们的广泛关注,例如在石墨烯/碳纳米管复合电极上添加CdTe量子点制作光电开关、掺杂金属颗粒制作场致发射装置。

 

有外媒报道的劳伦斯伯克利国家实验室将现有最精尖的晶体管制程从14nm缩减到了1nm,其晶体管就是由碳纳米管掺杂二硫化钼制作而成。不过这一技术成果仅仅处于实验室技术突破的阶段,目前还没有商业化量产的能力。至于该项技术将来是否会成为主流商用技术,还有待时间检验

 

再来说说光刻机分辨率的事要想做出更小制程的芯片,不仅要求材料能够达到这个极限,光刻机的分辨率也是一个非常重要的指标。如果光刻机无法曝出这么细的线条,那么再好的技术也是白搭。

 

 

5nm是物理极限,芯片发展将就此结束?,5nm是物理极限,芯片发展将就此结束?,第2张

 

 

要想提高分辨率,可以从光源、孔径NA和工艺三个方面来考虑。

 

 

5nm是物理极限,芯片发展将就此结束?,5nm是物理极限,芯片发展将就此结束?,第3张

 

 

光刻机分辨率:从1.0μm到7nm的演变过程、光源波长从436nm(G-line),经历356nm(I-line)和248nm(KrF),到193nm(ArF)、EUV的过程;NA从0.35经历了0.45、0.55、0.6、0.85;K1因子的变化由0.8~0.4等。然而,短波光学系统设计加工及相关材料的开发、NA的继续增加和K1的不断减小正面临着一系列的挑战。例如:大NA光学系统将导致焦深的减少,造成工件台和环境的控制更加苛刻,要求物镜波面差更小;较低的K1导致掩膜误差因子的增大,造成复制图形精度和保真度的下降。

 

 

 

 

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2568069.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-07
下一篇 2022-08-07

发表评论

登录后才能评论

评论列表(0条)

保存