电子技术的发展使得集成度越来越高。如果1960年电路中只有一个晶体管的话,那么现在每个集成电路硅片中至少有50万个晶体管。虽然硅片晶体管实现技术的进步使得晶体管的功耗不断降低,但硅片上单位面积的功耗却仍在增加。晶体管数量的迅速增加无法通过降低热量消耗来补偿。事实上,器件遇到的热问题不是与功率相关而是与温度相关。
不过,热问题却是功率密度的一个直接函数。在某些计算机中,单位面积硅片消耗的功率约为500 kW/m2,这完全可与宇宙飞船返回大气层时前部所承受的气流密度相比。在元件的寿命期间,失效原因主要有两个:1. 设计因素与/或内部构成;2. 元件所处环境的影响。气候约束主要源于温度、湿度、气压和太阳辐射。
所有电子元件都对温度敏感:超出极限温度时它们的性能将变得很差,如果温度大大超出工作温度范围,元件可能会损坏。工作温度是由制造商规定的,一般情况下为: * 工业级:0~70 °C; * 民用级:-20~+85 °C; * 军用级:-55~125 °C。
制造商通常都会指出最大工作温度。这个温度的影响体现在以下方面: (a) 电性能:该温度可能是一个极限值,超出这个温度将无法保证正常工作。参数漂移将导致不同程度的性能降低,直至失效;(b) 封装会受到温度剧烈变化的影响。在临界温度,元件的物理结构将发生状态改变。温度变化会加速材料约束的蠕变和松弛,并可能导致失效;3. 膨胀系数不同的多种材料相互联系的热循环会引起非常显着的应力,有可能导致瞬间断裂,或者引发长期而言将导致断裂的疲劳。
因此,冷却电子元件的目的是为了让每个元件处在额定的工作温度范围之内。
这就是EPSILON Ingénierie公司使用电子器件热仿真软件REBECA-3D时,所面临的热模拟挑战。
REBECA-3D软件
REBECA-3D(三维应用可靠边界元传导分析软件)对由传导交换所驱动的热传递进行仿真。由于采用了边界元方法(Boundary Element Method,BEM),REBECA-3D既是一个设计工具,又是一个建模工具。它比经典方法给出了更为精确和可靠的结果。下面将介绍这个三维软件的独创性,以显示其重要性。在电子元件领域,精确了解热性能具有关键意义。例如,它对更好地预测元件在其所处环境中的性能和可靠性有着重要的影响。
研究热性能必须使用建模工具。强大和精确的参数分析工具显然需要调整几何、电子和热参数。REBECA-3D在各种数值方法中选择了边界元法,因为它允许显着降低模型的几何复杂度,这种方法也适合通过很少的计算来进行敏感度研究。
1. REBECA-3D的应用领域
REBECA-3D的主要应用领域包括: (a) MEMS/MST; (b) 微观三维结构(硅和砷化镓); (c) 封装; (d) MMIC、HEMT器件; (e) MCM (多芯片模块、倒装芯片……); (f) 合成器件(薄膜/厚膜/MIC……); (g) 功率电子模块; (h) 光电器件;
2. REBECA-3D的独创性
REBECA-3D的独创性与其采用的数值方法紧密相关。REBECA-3D建立在边界元法的基础上,这种数值方法的采用直接带来了大量的优势和全新的可能。
正如Sevilla大学的Dominguez教授所说:“边界元法已成为替代有限元法(以及有限差分法等)的一种功能强大的方法,尤其是在需要更高精度的时候。”此外,“在许多工程应用中,有限元法已被证明是不足够的或低效率的。”而边界元法则是效率和速度的双重结果。
“在很多情况下,经典的数值方法使用起来过于麻烦,因此很难将它们集成到计算机辅助工程设计系统中去。例如,有限元法仍然是一种相对较慢的设计方法,以至于许多工程师宁愿选择可靠性一般但非常快的近似方法。”相反,边界元法只包括模型边界的离散化处理,然后提供一种更快的问题建模方法。对于三维模型,它可以更为迅速地评估具体设计中的参数变化。在需要进行设计优化和热性能表征的尖端电子器件分析中,减少计算时间已成为一项优先考虑。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)