MP3音频解码优化系统设计分析

MP3音频解码优化系统设计分析,第1张

MP3(MPEG Audio Layer 3)是一种以高保真为前提实现的高效压缩技术。MP3音频编码器复杂,压缩率很高,但其音色和音质还可以保持基本完整,因此该音频格式文件在计算机、网络和各种电子设备上都得到了广泛运用。

由于MP3音频解码相对比较复杂,为了达到在控制成本的范围内实现快速解码的要求,提出了在SoC上通过增加矩阵乘法器运行快速的两个16点DCT算法,进一步提高MP3解码速度的可行性方案。

1 MP3解码流程分析

MP3解码的流程如图1所示,解码的主要过程包括同步处理、解帧头、解边带信息、解比例因子、Huffman解码、逆量化、频率线重排序、立体声处理、混叠重建、改进离散余弦逆变换(IMDCT)、频率倒置处理、子代综合滤波,最后输出原始的PCM数据。

MP3音频解码优化系统设计分析,MP3音频解码优化系统设计分析,第2张

在这些过程中由于IMDCT和子带综合滤波的算法比较复杂,占用硬件资源较多,处理时间长,因此功耗所占比例相应较高。表1是在DSP平台上成功移植后,对代码进行耗时分析的结果。

MP3音频解码优化系统设计分析,MP3音频解码优化系统设计分析,第3张

根据表1可知,子带综合滤波占了整个解码时间的60 %以上,是决定解码速度的最关键模块;其次是长块IMDCT运算,占了整个解码时间的10%以上。若采用MPEG-1建议的算法流程,数值计算主要集中在子带综合滤波上。以两声道48 kHz采样率为例,乘法运算量为(48 000/32)×(64×32+512)×2=7 680 000次/s。因此,子带综合滤波是MP3解码器的优化重点,减少子带综合滤波的计算量和计算时间是MP3解码器实现的核心。

2 子带综合滤波分析

子带综合滤波是MP3解码的最后一部分,也是解码过程中最为耗时的关键步骤。它负责从IMDCT的输出值中把PCM值还原出来,可以分成5个步骤。首先是Matrixing(矩阵)运算,即,2,…,63。由公式可知,它从32个子带Sk的每个子带中取出一个值组成32个值送入一个矩阵中进行运算,然后把输出Vi的64个结果放入一个1 024的先入先出(FIFO)缓存中,再从1 024值中取出一半,组成一个512矢量Ui,并对这512矢量进行加窗运算,即Wi=UiDi,i=1,2,…,511,加窗系数Di由MP3官方协议 AnnexB Table3-B.3提供。最后将加窗结果Wi进行叠加生成32个时域PCM输出。

MP3音频解码优化系统设计分析,MP3音频解码优化系统设计分析,第4张

1次矩阵运算乘法和加法运算过程分别为1 024次和992次,完成1个声道的解码需要18次矩阵运算。矩阵运算是子带综合滤波的关键步骤。实际上,KonstanTInos KonstanTInides提出的方法,只需要做一些变化就可以通过32点DCT变换成矩阵运算。

2.1 32点快速DCT算法分析

快速DCT变换算法主要基于系数矩阵分裂方法,增加输入的预处理,使得乘法和加法计算量减半。32点的DCT变换到矩阵运算如图2所示。其中V(1×64)表示矩阵的输出,A,B都是长度为1×16的矢量,(A,B)表示32点DCT的输出。

由于32点的DCT可以分解成2个16点的DCT变换,依次类推可以分解成8点的DCT变换,考虑到定点数字信号处理中的有限字长效应,实际只需分解1 次,将32点DCT化成2个16点的DCT。简化子带滤波流程以及使用快速DCT变换后,子带综合滤波部分的运算量可以减少约60 %。

由32点DCT分解为2个16点DCT过程推导如下:

MP3音频解码优化系统设计分析,MP3音频解码优化系统设计分析,第5张

2.2 基于矩阵乘法器的快速DCT算法优化

3×3矩阵乘法器由触发器和乘累加器组成,是高性能DSP处理器的重要部件,也是实时处理的核心,其速度直接影响DSP处理器的速度。矩阵乘法器的实现有很多种,基本上都基于并行计算原则。由于每列结果与其他列不相关,因此可以通过增加乘法器多列同时计算,经过n次乘累加就可以得到最后结果。图3给出矩阵乘法器的结构。

显然,

MP3音频解码优化系统设计分析,MP3音频解码优化系统设计分析,第6张

这种结构的计算速度很快,但是使用乘法器会因矩阵维数n的增加而快速增加,使用的触发器也很多。在很多场合下,只要满足处理速度的要求,完全没有必要浪费这么多硬件资源,而是只要1个乘累加单元流水作业,分步计算每1列结果既可。在做乘累加计算1个元素时候,准备下一组参与运算的数据,如此循环,同样可以获得较高的处理速度。

在该设计中,由于B矩阵是1×n的一维向量输入数据,A矩阵为DCT系数矩阵,A矩阵中的元素为n个系数的线性组合,因此整个矩阵乘法器需要2组n个触发器分别存放输入数据和n个系数,1个乘累加单元。输入数据X[0:n],从X[O]到X[n]循环n次进入乘法器,使用选择信号Assi-gn[0:n] 选择系数C[0:n],另外系数符号由Sign信号软件控制,基本结构如图4所示。

MP3音频解码优化系统设计分析,MP3音频解码优化系统设计分析,第7张

由于DCT计算本质上就是n×n矩阵乘法运算,而n×n矩阵乘法器是在通用乘法器的基础上增加2组分别存放系数矩阵的系数C(n)和输入X(n)的n个寄存器,使之实现长度为n的乘累加功能,同时还需保存上次乘法结果。其中,DCT中的系数是一组n维基的n种线性组合。只需1次输入n个系数,使用软件进行选择和符号控制就可实现这些不同系数组合,无需反复往寄存器中置数,大大提高了取数/置数的效率,节省了整个DCT的运算时间。

因此在计算32点的DCT,可将32点DCT分解为2个16点的DCT计算,计算量也减少1倍。可以使用2组16×16的矩阵乘法器并行计算,使得计算时间大幅减少。表2是通过增加矩阵乘法器优化处理后,子带综合滤波使用不同实现方式所需要的时间。

MP3音频解码优化系统设计分析,MP3音频解码优化系统设计分析,第8张

结果表明,第2.1节中使用快速32点DCT算法改进子带综合滤波计算是有效的,直接减少59%的计算时间。在采用并行2个16×16矩阵乘法器加速快速 32点DCT的计算,可以取得明显的效果:使得计算时间比原算法减少了约91.4%,而且硬件上只增加1个乘法器和30个数据锁存器,以及部分控制电路。使用软硬件协同 *** 作就可以获得子带综合滤波计算速度上的大幅度上升。

3 结语

该设计面向SoC实现了利用增加矩阵乘法器就可加快基于32点快速DCT算法的MP3解码中子带综合滤波的处理速度,大大缓解了系统的颈瓶,使得采用系统主频比较低(fs≤100 MHz)的SoC平台进行MP3的解码成为可能。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2589242.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-08
下一篇 2022-08-08

发表评论

登录后才能评论

评论列表(0条)

保存