了解神经网络,你需要知道的名词都在这里

了解神经网络,你需要知道的名词都在这里,第1张

近日,Mate Labs 联合创始人兼 CTO 在 Medium 上撰文《Everything you need to know about Neural Networks》,从神经元到 Epoch,扼要介绍了神经网络的主要核心术语。

理解什么是人工智能,以及机器学习深度学习如何影响它,是一种不同凡响的体验。在 Mate Labs 我们有一群自学有成的工程师,希望本文能够分享一些学习的经验和捷径,帮助机器学习入门者理解一些核心术语的意义。

神经元(节点)—神经网络的基本单元,它包括特定数量的输入和一个偏置值。当一个信号(值)输入,它乘以一个权重值。如果一个神经元有 4 个输入,则有 4 个可在训练中调节的权重值。

了解神经网络,你需要知道的名词都在这里,了解神经网络,你需要知道的名词都在这里,第2张

 

了解神经网络,你需要知道的名词都在这里,了解神经网络,你需要知道的名词都在这里,第3张

 

神经网络中一个神经元的运算

了解神经网络,你需要知道的名词都在这里,了解神经网络,你需要知道的名词都在这里,第4张

 

连接—它负责连接同层或两层之间的神经元,一个连接总是带有一个权重值。训练的目标是更新这一权重值以降低损失(误差)。

了解神经网络,你需要知道的名词都在这里,了解神经网络,你需要知道的名词都在这里,第5张

 

偏置(Offset)—它是神经元的额外输入,值总是 1,并有自己的连接权重。这确保即使当所有输入为 0 时,神经元中也存在一个激活函数。

激活函数(迁移函数)—激活函数负责为神经网络引入非线性特征。它把值压缩到一个更小范围,即一个 Sigmoid 激活函数的值区间为 [0,1]。深度学习中有很多激活函数,ReLU、SeLU 、TanH 较 Sigmoid 更为常用。更多激活函数,请参见《一文概览深度学习中的激活函数》。

了解神经网络,你需要知道的名词都在这里,了解神经网络,你需要知道的名词都在这里,第6张

 

各种激活函数

了解神经网络,你需要知道的名词都在这里,了解神经网络,你需要知道的名词都在这里,第7张

 

基本的神经网络设计

输入层—神经网络的第一层。它接收输入信号(值)并将其传递至下一层,但不对输入信号(值)执行任何运算。它没有自己的权重值和偏置值。我们的网络中有 4 个输入信号 x1、x2、x3、x4。

隐藏层—隐藏层的神经元(节点)通过不同方式转换输入数据。一个隐藏层是一个垂直堆栈的神经元集。下面的图像有 5 个隐藏层,第 1 个隐藏层有 4 个神经元(节点),第 2 个 5 个神经元,第 3 个 6 个神经元,第 4 个 4 个神经元,第 5 个 3 个神经元。最后一个隐藏层把值传递给输出层。隐藏层中所有的神经元彼此连接,下一层的每个神经元也是同样情况,从而我们得到一个全连接的隐藏层。

输出层—它是神经网络的最后一层,接收来自最后一个隐藏层的输入。通过它我们可以得到合理范围内的理想数值。该神经网络的输出层有 3 个神经元,分别输出 y1、y2、y3。

输入形状—它是我们传递到输入层的输入矩阵的形状。我们的神经网络的输入层有 4 个神经元,它预计 1 个样本中的 4 个值。该网络的理想输入形状是 (1, 4, 1),如果我们一次馈送它一个样本。如果我们馈送 100 个样本,输入形状将是 (100, 4, 1)。不同的库预计有不同格式的形状。

权重(参数)—权重表征不同单元之间连接的强度。如果从节点 1 到节点 2 的权重有较大量级,即意味着神将元 1 对神经元 2 有较大的影响力。一个权重降低了输入值的重要性。权重近于 0 意味着改变这一输入将不会改变输出。负权重意味着增加这一输入将会降低输出。权重决定着输入对输出的影响力。

了解神经网络,你需要知道的名词都在这里,了解神经网络,你需要知道的名词都在这里,第8张

 

前向传播

前向传播—它是把输入值馈送至神经网络的过程,并获得一个我们称之为预测值的输出。有时我们也把前向传播称为推断。当我们馈送输入值到神经网络的第一层时,它不执行任何运算。第二层接收第一层的值,接着执行乘法、加法和激活运算,然后传递至下一层。后续的层重复相同过程,最后我们从最后一层获得输出值。

了解神经网络,你需要知道的名词都在这里,了解神经网络,你需要知道的名词都在这里,第9张

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2598994.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-09
下一篇 2022-08-09

发表评论

登录后才能评论

评论列表(0条)

保存