DMA控制器是一种在系统内部转移数据的独特外设,可以将其视为一种能够通过一组专用总线将内部和外部存储器与每个具有DMA能力的外设连接起来的控制器。它之所以属于外设,是因为它是在处理器的编程控制下来 执行传输的。
传输结构与设置目前有两类主要的DMA传输结构:寄存器模式和描述符模式。无论属于哪一类DMA,表1的几种信息都会在DMA控制器中出现。当DMA以寄存器模式工作时,DMA控制器只是简单地利用寄存器中所存储的参数值。在描述符模式中,DMA控制器在存储器中查找自己的配置参数。
(1)基于寄存器的DMA
在基于寄存器的DMA内部,处理器直接对DMA控制寄存器进行编程,来启动传输。基于寄存器的DMA提供了最佳的DMA控制器性能,因为寄存器并不需要不断地从存储器中的描述符上载入数据,而内核也不需要保持描述符。基于寄存器的DMA由两种子模式组成:自动缓冲(Autobuffer)模式和停止模式。在自动缓冲DMA中,当一个传输块传输完毕,控制寄存器就自动重新载入其最初的设定值,同一个DMA进程重新启动,开销为零。如果将一个自动缓冲DMA设定为从外设传输一定数量的字到 L1数据存储器的缓冲器上,则DMA控制器将会在最后一个字传输完成的时刻就迅速重新载入初始的参数。这构成了一个“循环缓冲器”,因为当一个量值被写入 到缓冲器的最后一个位置上时,下一个值将被写入到缓冲器的第一个位置上。
自动缓冲DMA特别适合于对性能敏感的、存在持续数据流的应用。DMA控制器可以在独立于处理器其他活动的情况下读入数据流,然后在每次传输结束时,向内核发出中断。
停止模式的工作方式与自动缓冲DMA类似,区别在于各寄存器在DMA结束后不会重新载入,因 此整个DMA传输只发生一次。停止模式对于基于某种事件的一次性传输来说十分有用。例如,非定期地将数据块从一个位置转移到另一个位置。当你需要对事件进 行同步时,这种模式也非常有用。例如,如果一个任务必须在下一次传输前完成的话,则停止模式可以确保各事件发生的先后顺序。此外,停止模式对于缓冲器的初 始化来说非常有用。
(2)描述符模型
基于描述符(descriptor)的DMA要求在存储器中存入一组参数,以 启动DMA的系列 *** 作。该描述符所包含的参数与那些通常通过编程写入DMA控制寄存器组的所有参数相同。不过,描述符还可以容许多个DMA *** 作序列串在一 起。在基于描述符的DMA *** 作中,我们可以对一个DMA通道进行编程,在当前的 *** 作序列完成后,自动设置并启动另一次DMA传输。基于描述符的方式为管理 系统中的DMA传输提供了最大的灵活性。
基本组成(1)内存地址计数器:用于存放内存中要交换的数据的地址。在 DMA传送前,须通过程序将数据在内存中的起始位置(首地址)送到内存地址计数器。而当 DMA 传送时,每交换一次数据,将地址计数器加“1”,从而以增量方式给出内存中要交换的一批数据的地址。
(2)字计数器:用于记录传送数据块的长度(多少字数)。其内容也是在数据传送之前由程序预置,交换的字数通常以补码形式表示。在DMA传送时,每传送一个字,字计数器就加“1”。当计数器溢出即最高位产生进位时,表示这批数据传送完毕,于是引起DMA控制器向CPU发出中断信号。
(3)数据缓冲寄存器:用于暂存每次传送的数据(一个字)。当输入时,由设备(如磁盘)送往数据缓冲寄存器,再由缓冲寄存器通过数据总线送到内存。反之,输出时,由内存通过数据总线送到数据缓冲寄存器,然后再送到设备。
(4)DMA请求”标志:每当设备准备好一个数据字后给出一个控制信号,使“DMA
请求”标志置“1”。该标志置位后向“控制/状态”逻辑发出DMA请求,后者又向CPU发出总线使用权的请求(HOLD),CPU响应此请求后发回响应信号HLDA,“控制/状态”逻辑接收此信号后发出DMA响应信号,使“DMA 请求”标志复位,为交换下一个字做好准备。
(5)控制/状态”逻辑:由控制和时序电路以及状态标志等组成,用于修改内存地址计数器和字计数器,指定传送类型(输入或输出),并对“DMA请求”信号和CPU响应信号进行协调和同步。
(6)中断机构:当字计数器溢出时,意味着一组数据交换完毕,由溢出信号触发中断机构,向CPU提出中断报告。
二、NiosⅡ介绍Nios Ⅱ嵌入式处理器是ALTERA公司推出的采用哈佛结构、具有32位指令集的第二代片上可编程的软核处理器, 其最大优势和特点是模块化的硬件结构, 以及由此带来的灵活性和可裁减性。
NiosⅡ特点Nios II系列支持使用专用指令。专用指令是用户增加的硬件模块,它增加了算术逻辑单元(ALU)。用户能为系统中使用的每个Nios II处理器创建多达256个专用指令,这使得设计者能够细致地调整系统硬件以满足性能目标。专用指令逻辑和本身Nios II指令相同,能够从多达两个源寄存器取值,可选择将结果写回目标寄存器。同时,Nios II系列支持60多个外设选项,开发者能够选择合适的外设,获得最合适的处理器、外设和接口组合,而不必支付根本不使用的硅片功能。 Nios II系列能够满足任何应用32位嵌入式微处理器的需要,客户可以将第一代Nios处理器设计移植到某种Nios II处理器上,Altera将长期支持现有FPGA系列上的第一代Nios处理器。另外,Altera提供了一键式移植选项,可以升级至Nios II系列。Nios II处理器也能够在HardCopy器件中实现,Altera还为基于Nios II处理器的系统提供ASIC的移植方式。
开发环境Nios II处理器具有完善的软件开发套件,包括编译器、集成开发环境(IDE)、JTAG调试器、实时 *** 作系统(RTOS)和TCP/IP协议栈。设计者能够用Altera Quartus II开发软件中的SOPC Builder系统开发工具很容易地创建专用的处理器系统,并能够根据系统的需求添加Nios II处理器核的数量。
使用Nios II软件开发工具能够为Nios II系统构建软件,即一键式自动生成适用于系统硬件的专用C++/C++运行环境。Nios II集成开发环境(IDE)提供了许多软件模板,简化了项目设置。此外,Nios II开发套件包括两个第三方实时 *** 作系统(RTOS)——MicroC/OS-II(Micrium),Nucleus Plus(ATI/Mentor)以及供网络应用使用的TCP/IP协议栈。
三、NiosⅡ系统中DMA控制器的原理及应用 1、dma控制器的原理 1.1dma功能介绍nios ⅱ中的dma控制器包含2个avalonmm类型的主控制器端口(读端口和写端口),1个用于dma控制avalonmm类型的从端口以及内部一些寄存器组所构成,其结构图如图1所示。
图1dma控制器的结构图dma控制器可以将数据从源地址搬移到目的地址。源地址或者目的地址可以是存储器中的一段地址范围也可以是avalon从控制器的外设。因此,在nios ⅱ系统中,存在3种类型的dma *** 作,即存储器到外设,外设到存储器以及存储器到存储器。dma控制器还具备流处理能力,允许固定或者可变长度的数据传输。当dma *** 作结束时,dma控制器发出中断(irq)请求。典型的dma数据传输过程如下:
(1) cpu通过写控制端口配置dma控制器用于数据传输;
(2) dma控制器向cpu发出hold信号请求占用总线;
(3) cpu响应dma控制器的请求,并让出总线,dma控制器获得总线的控制权;
(4) dma控制器读端口从源地址读数据,写端口向目的地址写数据,读写端口间利用fifo缓存数据;
(5) 当传输完指定的数据时,dma传输结束并向nios ⅱ cpu发出中断请求;
(6) cpu响应中断请求,dma交出总线控制权。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)