浅议低功耗、低噪声电源电路设计经验和感想

浅议低功耗、低噪声电源电路设计经验和感想,第1张

  设计一个需要超低功耗的无线产品,一个3AH的电池要能工作5-6年,需要整个通信机制需要有省电的功能,也需要产品本身有超低功耗的能力。那么在设计低功耗、低噪声的电源的时候,如何一步一步的规划、选择器件、以及调试才能设计出一款给力的低功耗、低噪声的电源电路,其中有又哪些需要注意的呢?请看下文工程师的设计经验和技巧分享!

  在做硬件系统设计时,需要选择正确的电源供电芯片,无论是设计消费数码电子还是无线传感设备,需要权衡好产品的各个功能需求。在对噪声抑制、耗电量、压降、和电源电压电流等指标做出评估和划定优先级后,才可以进行电源IC的选择。

  每个信号路径需要“干净”的电源。电源管理是系统设计的最后部分。图1显示了如何为信号路径供电的实例系统。

  浅议低功耗、低噪声电源电路设计经验和感想,图1显示了如何为信号路径供电的实例系统,第2张

  设计一个需要超低功耗的无线产品,一个3AH的电池要能工作5-6年,这个需要整个通信机制需要有省电的功能,也需要产品本身需要有超低功耗的能力,一个无线产品需要具有超低功耗需要从产品的几个构成部分来分析:

  1)电源部分

  2)RF部分

  3)CPU部分

  4)其他部分

  这里结合我的工作做对电源部分的分析:

  选择电源芯片原则:

  1)选择工艺成熟,产品质量好,性价比好的厂家产品。

  2)选择工作频率高的产品,降低周围器件,降低成本。

  3)用封装小的,但要考虑输出电流的大小,一般都是小封装小电流,大封装大电流

  4)选择技术支持好的厂家,特别是小公司选择电源器件时要注意,小公司别人不理睬你

  5)选择资料齐全的,最好有中文的,样品可以申请的,最好有免费的,供货周期短的,最好不 要老停产

  以上是从大的层面来做分析,包括设计和采购等方面来考虑。

  从技术要求的层面来分析:

  LDO 器件选择

  LDO选择4个要素:压差、噪声、静态电流、共模抑制比。

  仅仅从省电来说,主要看静态电流,有的LDO静态电流很小,1UA左右,就是LDO工作时,自身的耗电,这个参数在省电中很关键,越小肯定越好,但不可能为0,LDO的耗电有两个指标:一个为静态电流,一个为SET_OFF电流,要区分哦!!还有压差,这个好理解,压差为0就是很理想的LDO。

  我现在用的是S-1206系列,日本的,用日货,没有办法,SOT23,路过的朋友介绍一个国货给我,质量要好的,还有R1180X系列,好像也是日本的。以上都是5ua以下的IQ值。

  但是做RF的LDO,就需要考虑:噪声抑制了,因为RF这玩意对噪声的敏感度太高了。

  电源抑制比PSRR (Power supply ripple rejecTIon raTIo))是反映输出和输入频率相同的条件下,LDO输出对输入纹波抑制能力的交流参数。和噪声(Noise)不同,噪声通常是指在10Hz至 100kHz频率范围内,LDO在一定输入电压下其输出电压噪声的均方值(RMS),PSRR的单位是dB,公式如下:PSRR=20 log(△vin/△vout)

  电源影响信号路径性能

 浅议低功耗、低噪声电源电路设计经验和感想,第3张

图2,电源抑制比(PSRR)是对从输入到输出纹波/噪声的衰减度量
 

  并不意外的是,电源影响模拟信号完整性,这最终会影响整体的系统性能。提高信号路径性能的一种简单方法是选择正确的电源。在选择电源时,影响模拟信号路径性能的一个关键参数是电源线上的噪声或纹波。电源线上的噪声或纹波可以耦合运算放大器的输出中,增加锁相环 (PLL)或压控振荡器(VCO)的抖动,或者降低ADC的SNR。低噪声和低纹波的电源还能改善信号路径性能。

  电源线上的噪声或纹波的来源具有多样性。在系统内的高速数据和高频信号本身会产生噪声,PCB的印制线和连接线如果设计不当,可以形成发射天线的效应。数字IC,例如微控制器和现场可编程门阵列(FPGA)以及复杂可编程逻辑器件CPLD)具有很快的边沿跳变速度,电流的大小变化很大,将产生电磁干扰辐射到系统中。IC硅片在内部产生热噪声,这是由于在温度高于绝对0摄氏度时分子的随机运动和碰撞产生的。

  有三种常用的方法来使信号路径中的噪声和纹波最小:非常仔细的系统PCB布局、恰当的电源旁路处理以及正确的电源选择。尽管PCB的具体设计取决于系统,但就一般而言,PCB的布局需要考虑包括正确的器件布局、使信号路径连接线的长度最小以及采用实体的地等。

  对电源轨进行旁路处理是一种常用的方法,这种方法通常在模拟IC产品手册中被推荐用于滤出噪声。信号路径IC可以具有分离的模拟、数字和PLL电源输入,建议每个采用自己独立的旁路处理。PLL电源和模拟电源对噪声和纹波最敏感。旁路电容、阻容(RC)滤波器以及EMI抑制滤波器使进入信号路径的电源噪声最小化。

  正确的电源选择可以降低对信号路径IC的噪声和纹波影响。在选择一种电源时,设计师首先在开关变换器和线性稳压器之间作一个基本选择。开关转换器提供较高的频率,更高的频率意味着较低的整体系统功耗。线性稳压器提供一种易于使用的解决方案,同时降低电源轨的噪声/纹波。使用线性稳压器降低噪声和纹波可以改善信号路径性能。

  毫无疑问,在便携式无线产品里,即需要自身工作耗电电流小的,又需要PSRR大的LDO,但是目前市面上的LDO产品,能兼顾到这两个指标的产品很少,本人找到一个S1167的LDO,工作自身耗电为9UA,PSRR为70dB,应该说是比较兼顾这两个指标的,但是是日本货。

  单单是考虑到PSRR,而IQ在45左右都无所谓的话,用AS1361是不错的,PSRR可到90dB以上。

  DC-DC电源选择

  对于DC-DC来说,主要考虑转换的效率,纹波,输入输出电压等。

  1. 如需求的输出电流较小,可选择FET内置型;输出电流需要较大时,选择外接FET类型。

  2. 关于效率有以下考虑:如果需优先考虑重负荷时的纹波电压及消除噪音,可选择PWM控制型;如果同时亦需重视低负荷时的效率,则可选择PFM/PWM切换控制型。

  3. 如要求小型化,则可选择能使用小型线圈的高频产品。

  4. 在输出电压方面,如果输出电压需要达到固定电压以上,或需要不固定的输出电压时,刚可选择输出可变的VDD/VOUT分离型产品。

  DC-DC工作方式PFM与PWM比较:

  PWM控制、PFM控制和PWM/PFM切换控制模式这三种控制方式各有各的优点与缺点: DC/DC变换器是通过与内部频率同步开关进行升压或降压,通过变化开关次数进行控制,从而得到与设定电压相同的输出电压。

  PFM控制时,当输出电压达到在设定电压以上时即会停止开关,在下降到设定电压前,DC/DC变换器不会进行任何 *** 作。但如果输出电压下降到设定电压以下,DC/DC变换器会再次开始开关,使输出电压达到设定电压。PWM控制也是与频率同步进行开关,但是它会在达到升压设定值时,尽量减少流入线圈的电流,调整升压使其与设定电压保持一致。

  与PWM相比,PFM的输出电流小,但是因PFM控制的DC/DC变换器在达到设定电压以上时就会停止动作,所以消耗的电流就会变得很小。因此,消耗电流的减少可改进低负荷时的效率。PWM在低负荷时虽然效率较逊色,但是因其纹波电压小,且开关频率固定,所以噪声滤波器设计比较容易,消除噪声也较简单。

  若需同时具备PFM与PWM的优点的话,可选择PWM/PFM切换控制式DC/DC变换器。此功能是在重负荷时由PWM控制,低负荷时自动切换到 PFM控制,即在一款产品中同时具备PWM的优点与PFM的优点。在备有待机模式的系统中,采用PFM/PWM切换控制的产品能得到较高效率。

  高频的优点 :

  通过实际测试PWM与PFM/PWM的效率,可以发现PWM/PFM切换的产品在低负荷时的效率较高。至于高频方面,通过提高DC/DC变换器的频率,可以实现大电流化、小型化和高效率化。但是,必须注意的是只有通过线圈的特性配合才可以提高效率。因为当DC/DC变换器高频化后,由于开关次数随之增加的原因,开关损失也会增大,从而导致效率会有所降低。因此,效率是由线圈性能提升与开关损失增加两方面折衷决定的。通过使用高效率的产品,相对可使用较低电感值的线圈,可以使用小型线圈,即使使用的是小型线圈也可得到相同的效率及输出电流。

  外接器件选择:

  除了需要关注DC/DC变换器本身的特性外,外接组件的选择也不能忽视。外接组件中的线圈、电容器和FET对于开关电源特性有着很大影响。这里所谓的特性是指输出电流、输出纹波电压及效率。

  线圈:如果需要追求高效率,最好选择直流电阻和电感值较小的线圈。但是,如果电感值较小的线圈用于频率较低的DC/DC,就会超过线圈的额定电流,线圈会产生磁饱和现象,引起效率恶化或损坏线圈。而且如果电感值太小,也会引起纹波电压变大。所以在选择线圈时,请注意流向线圈的电流不要超过线圈的额定电流。在选择线圈时,需要根据输出电流、DC/DC的频率、线圈的电感值、线圈的额定电流和纹波电压等条件综合决定。

  电容:输出电容的容量越大,纹波电压就越小。但是较大的容量也意味着较大的电容体积,所以请选择最适合的容量。

  三极管:作为外接的三极管,与双极晶体管相比,因FET的开关速度比较快,所以开关损耗会较小,效率会更高一些。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2703580.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-16
下一篇 2022-08-16

发表评论

登录后才能评论

评论列表(0条)

保存