8点PyTorch提速技巧总结

8点PyTorch提速技巧总结,第1张

 

导读

本文总结了8点PyTorch提速技巧:分别为硬件层面、如何测试训练过程的瓶颈、图片解码、数据增强加速、data Prefetch、多GPU并行处理、混合精度训练、其他细节。

训练大型的数据集的速度受很多因素影响,由于数据集比较大,每个优化带来的时间提升就不可小觑。硬件方面,CPU、内存大小、GPU、机械硬盘orSSD存储等都会有一定的影响。软件实现方面,PyTorch本身的DataLoader有时候会不够用,需要额外 *** 作,比如使用混合精度、数据预读取、多线程读取数据、多卡并行优化等策略也会给整个模型优化带来非常巨大的作用。那什么时候需要采取这篇文章的策略呢?那就是明明GPU显存已经占满,但是显存的利用率很低。本文将搜集到的资源进行汇总,由于目前笔者训练的GPU利用率已经很高,所以并没有实际实验,可以在参考文献中看一下其他作者做的实验。

1. 硬件层面

CPU的话尽量看主频比较高的,缓存比较大的,核心数也是比较重要的参数。显卡尽可能选现存比较大的,这样才能满足大batch训练,多卡当让更好。内存要求64G,4根16G的内存条插满绝对够用了。主板性能也要跟上,否则装再好的CPU也很难发挥出全部性能。电源供电要充足,GPU运行的时候会对功率有一定要求,全力运行的时候如果电源供电不足对性能影响还是比较大的。存储如果有条件,尽量使用SSD存放数据,SSD和机械硬盘的在训练的时候的读取速度不是一个量级。笔者试验过,相同的代码,将数据移动到SSD上要比在机械硬盘上快10倍。 *** 作系统尽量用Ubuntu就可以(实验室用)如何实时查看Ubuntu下各个资源利用情况呢?

  • GPU使用 watch -n 1 nvidia-smi 来动态监控
  • IO情况,使用iostat命令来监控
  • CPU情况,使用htop命令来监控

笔者对硬件了解很有限,欢迎补充,如有问题轻喷。

2. 如何测试训练过程的瓶颈

如果现在程序运行速度很慢,那应该如何判断瓶颈在哪里呢?PyTorch中提供了工具,非常方便的可以查看设计的代码在各个部分运行所消耗的时间。

瓶颈测试:https://pytorch.org/docs/stable/bottleneck.html

可以使用PyTorch中bottleneck工具,具体使用方法如下:


		
python -m torch.uTIls.bottleneck /path/to/source/script.py [args]

详细内容可以看上面给出的链接。当然,也可用cProfile这样的工具来测试瓶颈所在,先运行以下命令。


		
python -m cProfile -o 100_percent_gpu_uTIlizaTIon.prof train.py

这样就得到了文件100_percent_gpu_uTIlization.prof对其进行可视化(用到了snakeviz包,pip install snakeviz即可)


		
snakeviz 100_percent_gpu_utilization.prof

可视化的结果如下图所示:

8点PyTorch提速技巧总结,d345e9aa-1cfb-11ed-ba43-dac502259ad0.png,第2张在浏览器中打开就可以找到这张分析图

其他方法:


		
# Profile CPU bottleneckspython -m cProfile training_script.py --profiling# Profile GPU bottlenecksnvprof --print-gpu-trace python train_mnist.py# Profile system calls bottlenecksstrace -fcT python training_script.py -e trace=open,close,read

还可以用以下代码分析:


		
def test_loss_profiling():    loss = nn.BCEWithLogitsLoss()    with torch.autograd.profiler.profile(use_cuda=True) as prof:        input = torch.randn((8, 1, 128, 128)).cuda()        input.requires_grad = True
        target = torch.randint(1, (8, 1, 128, 128)).cuda().float()
        for i in range(10):            l = loss(input, target)            l.backward()    print(prof.key_averages().table(sort_by="self_cpu_time_total"))
3. 图片解码

PyTorch中默认使用的是Pillow进行图像的解码,但是其效率要比Opencv差一些,如果图片全部是JPEG格式,可以考虑使用TurboJpeg库解码。具体速度对比如下图所示:

8点PyTorch提速技巧总结,d35d4a1e-1cfb-11ed-ba43-dac502259ad0.png,第3张各个库图片解码方式对比(图源德澎)

对于jpeg读取也可以考虑使用jpeg4py库(pip install jpeg4py),重写一个loader即可。存bmp图也可以降低解码耗时,其他方案还有recordIO,hdf5,pth,n5,lmdb等格式

4. 数据增强加速

在PyTorch中,通常使用transformer做图片分类任务的数据增强,而其调用的是CPU做一些Crop、Flip、Jitter等 *** 作。如果你通过观察发现你的CPU利用率非常高,GPU利用率比较低,那说明瓶颈在于CPU预处理,可以使用Nvidia提供的DALI库在GPU端完成这部分数据增强 *** 作。

Dali链接:https://github.com/NVIDIA/DALI

文档也非常详细:

Dali文档:https://docs.nvidia.com/deeplearning/sdk/dali-developer-guide/index.html

当然,Dali提供的 *** 作比较有限,仅仅实现了常用的方法,有些新的方法比如cutout需要自己搞。具体实现可以参考这一篇:https://zhuanlan.zhihu.com/p/77633542

5. data Prefetch

Nvidia Apex中提供的解决方案

参考来源:https://zhuanlan.zhihu.com/p/66145913

Apex提供的策略就是预读取下一次迭代需要的数据。


		
class data_prefetcher():    def __init__(self, loader):        self.loader = iter(loader)        self.stream = torch.cuda.Stream()        self.mean = torch.tensor([0.485 * 255, 0.456 * 255, 0.406 * 255]).cuda().view(1,3,1,1)        self.std = torch.tensor([0.229 * 255, 0.224 * 255, 0.225 * 255]).cuda().view(1,3,1,1)        # With Amp, it isn't necessary to manually convert data to half.        # if args.fp16:        #     self.mean = self.mean.half()        #     self.std = self.std.half()        self.preload()
    def preload(self):        try:            self.next_input, self.next_target = next(self.loader)        except StopIteration:            self.next_input = None            self.next_target = None            return        with torch.cuda.stream(self.stream):            self.next_input = self.next_input.cuda(non_blocking=True)            self.next_target = self.next_target.cuda(non_blocking=True)            # With Amp, it isn't necessary to manually convert data to half.            # if args.fp16:            #     self.next_input = self.next_input.half()            # else:            self.next_input = self.next_input.float()            self.next_input = self.next_input.sub_(self.mean).div_(self.std)

在训练函数中进行如下修改:原先是:


		
training_data_loader = DataLoader(    dataset=train_dataset,    num_workers=opts.threads,    batch_size=opts.batchSize,    pin_memory=True,    shuffle=True,)for iteration, batch in enumerate(training_data_loader, 1):    # 训练代码

修改以后:


		
data, label = prefetcher.next()iteration = 0while data is not None:    iteration += 1    # 训练代码    data, label = prefetcher.next()

用prefetch库实现

https://zhuanlan.zhihu.com/p/97190313

安装:


		
pip install prefetch_generator

使用:


		
from torch.utils.data import DataLoaderfrom prefetch_generator import BackgroundGenerator
class DataLoaderX(DataLoader):
    def __iter__(self):        return BackgroundGenerator(super().__iter__())

然后用DataLoaderX替换原本的DataLoadercuda.Steam加速拷贝过程

https://zhuanlan.zhihu.com/p/97190313

实现:


		
class DataPrefetcher():    def __init__(self, loader, opt):        self.loader = iter(loader)        self.opt = opt        self.stream = torch.cuda.Stream()        # With Amp, it isn't necessary to manually convert data to half.        # if args.fp16:        #     self.mean = self.mean.half()        #     self.std = self.std.half()        self.preload()
    def preload(self):        try:            self.batch = next(self.loader)        except StopIteration:            self.batch = None            return        with torch.cuda.stream(self.stream):            for k in self.batch:                if k != 'meta':                    self.batch[k] = self.batch[k].to(device=self.opt.device, non_blocking=True)
            # With Amp, it isn't necessary to manually convert data to half.            # if args.fp16:            #     self.next_input = self.next_input.half()            # else:            #     self.next_input = self.next_input.float()
    def next(self):        torch.cuda.current_stream().wait_stream(self.stream)        batch = self.batch        self.preload()        return batch

调用:


		
# ----改造前----for iter_id, batch in enumerate(data_loader):    if iter_id >= num_iters:        break    for k in batch:        if k != 'meta':            batch[k] = batch[k].to(device=opt.device, non_blocking=True)    run_step()
# ----改造后----prefetcher = DataPrefetcher(data_loader, opt)batch = prefetcher.next()iter_id = 0while batch is not None:    iter_id += 1    if iter_id >= num_iters:        break    run_step()    batch = prefetcher.next()

国外大佬实现

数据加载部分


		
import threadingimport numpy as npimport cv2import random 
class threadsafe_iter:  """Takes an iterator/generator and makes it thread-safe by  serializing call to the `next` method of given iterator/generator.  """  def __init__(self, it):    self.it = it    self.lock = threading.Lock()
  def __iter__(self):    return self
  def next(self):    with self.lock:      return self.it.next()
def get_path_i(paths_count):  """Cyclic generator of paths indice  """  current_path_id = 0  while True:    yield current_path_id    current_path_id    = (current_path_id + 1) % paths_count
class InputGen:  def __init__(self, paths, batch_size):    self.paths = paths    self.index = 0    self.batch_size = batch_size    self.init_count = 0    self.lock = threading.Lock() #mutex for input path    self.yield_lock = threading.Lock() #mutex for generator yielding of batch    self.path_id_generator = threadsafe_iter(get_path_i(len(self.paths)))     self.images = []    self.labels = []
  def get_samples_count(self):    """ Returns the total number of images needed to train an epoch """    return len(self.paths)
  def get_batches_count(self):    """ Returns the total number of batches needed to train an epoch """    return int(self.get_samples_count() / self.batch_size)
  def pre_process_input(self, im,lb):    """ Do your pre-processing here                Need to be thread-safe function"""    return im, lb
  def next(self):    return self.__iter__()
  def __iter__(self):    while True:      #In the start of each epoch we shuffle the data paths                  with self.lock:         if (self.init_count == 0):          random.shuffle(self.paths)          self.images, self.labels, self.batch_paths = [], [], []          self.init_count = 1      #Iterates through the input paths in a thread-safe manner      for path_id in self.path_id_generator:         img, label = self.paths[path_id]        img = cv2.imread(img, 1)        label_img = cv2.imread(label,1)        img, label = self.pre_process_input(img,label_img)        #Concurrent access by multiple threads to the lists below        with self.yield_lock:           if (len(self.images)) < self.batch_size:            self.images.append(img)            self.labels.append(label)          if len(self.images) % self.batch_size == 0:                                yield np.float32(self.images), np.float32(self.labels)            self.images, self.labels = [], []      #At the end of an epoch we re-init data-structures      with self.lock:         self.init_count = 0  def __call__(self):    return self.__iter__()

使用方法:


		
class thread_killer(object):  """Boolean object for signaling a worker thread to terminate  """  def __init__(self):    self.to_kill = False
  def __call__(self):    return self.to_kill
  def set_tokill(self,tokill):    self.to_kill = tokill
def threaded_batches_feeder(tokill, batches_queue, dataset_generator):  """Threaded worker for pre-processing input data.  tokill is a thread_killer object that indicates whether a thread should be terminated  dataset_generator is the training/validation dataset generator  batches_queue is a limited size thread-safe Queue instance.  """  while tokill() == False:    for batch, (batch_images, batch_labels)       in enumerate(dataset_generator):        #We fill the queue with new fetched batch until we reach the max       size.        batches_queue.put((batch, (batch_images, batch_labels))                , block=True)        if tokill() == True:          return
def threaded_cuda_batches(tokill,cuda_batches_queue,batches_queue):  """Thread worker for transferring pytorch tensors into  GPU. batches_queue is the queue that fetches numpy cpu tensors.  cuda_batches_queue receives numpy cpu tensors and transfers them to GPU space.  """  while tokill() == False:    batch, (batch_images, batch_labels) = batches_queue.get(block=True)    batch_images_np = np.transpose(batch_images, (0, 3, 1, 2))    batch_images = torch.from_numpy(batch_images_np)    batch_labels = torch.from_numpy(batch_labels)
    batch_images = Variable(batch_images).cuda()    batch_labels = Variable(batch_labels).cuda()    cuda_batches_queue.put((batch, (batch_images, batch_labels)), block=True)    if tokill() == True:      return
if __name__ =='__main__':  import time  import Thread  import sys  from Queue import Empty,Full,Queue
  num_epoches=1000  #model is some Pytorch CNN model  model.cuda()  model.train()  batches_per_epoch = 64  #Training set list suppose to be a list of full-paths for all  #the training images.  training_set_list = None  #Our train batches queue can hold at max 12 batches at any given time.  #Once the queue is filled the queue is locked.  train_batches_queue = Queue(maxsize=12)  #Our numpy batches cuda transferer queue.  #Once the queue is filled the queue is locked  #We set maxsize to 3 due to GPU memory size limitations  cuda_batches_queue = Queue(maxsize=3)

  training_set_generator = InputGen(training_set_list,batches_per_epoch)  train_thread_killer = thread_killer()  train_thread_killer.set_tokill(False)  preprocess_workers = 4

  #We launch 4 threads to do load && pre-process the input images  for _ in range(preprocess_workers):    t = Thread(target=threaded_batches_feeder,            args=(train_thread_killer, train_batches_queue, training_set_generator))    t.start()  cuda_transfers_thread_killer = thread_killer()  cuda_transfers_thread_killer.set_tokill(False)  cudathread = Thread(target=threaded_cuda_batches,            args=(cuda_transfers_thread_killer, cuda_batches_queue, train_batches_queue))  cudathread.start()

  #We let queue to get filled before we start the training  time.sleep(8)  for epoch in range(num_epoches):    for batch in range(batches_per_epoch):
      #We fetch a GPU batch in 0's due to the queue mechanism      _, (batch_images, batch_labels) = cuda_batches_queue.get(block=True)
      #train batch is the method for your training step.      #no need to pin_memory due to diminished cuda transfers using queues.      loss, accuracy = train_batch(batch_images, batch_labels)
  train_thread_killer.set_tokill(True)  cuda_transfers_thread_killer.set_tokill(True)      for _ in range(preprocess_workers):    try:      #Enforcing thread shutdown      train_batches_queue.get(block=True,timeout=1)                  cuda_batches_queue.get(block=True,timeout=1)        except Empty:      pass  print "Training done"
6. 多GPU并行处理

PyTorch中提供了分布式训练API, nn.DistributedDataParallel, 推理的时候也可以使用nn.DataParallel或者nn.DistributedDataParallel。推荐一个库,里面实现了多种分布式训练的demo: https://github.com/tczhangzhi/pytorch-distributed 其中包括:

  • nn.DataParallel
  • torch.distributed
  • torch.multiprocessing
  • apex再加速
  • horovod实现
  • slurm GPU集群分布式
7. 混合精度训练

mixed precision yyds,之前分享过mixed precision论文阅读,实现起来非常简单。在PyTorch中,可以使用Apex库。如果用的是最新版本的PyTorch,其自身已经支持了混合精度训练,非常nice。简单来说,混合精度能够让你在精度不掉的情况下,batch提升一倍。其原理就是将原先float point32精度的数据变为float point16的数据,不管是数据传输还是训练过程,都极大提升了训练速度,炼丹必备。

8. 其他细节

		
batch_images = batch_images.pin_memory() Batch_labels = Variable(batch_labels).cuda(non_blocking=True)
  • PyTorch的DataLoader有一个参数pin_memory,使用固定内存,并使用non_blocking=True来并行处理数据传输。
  • torch.backends.cudnn.benchmark=True
  • 及时释放掉不需要的显存、内存。
  • 如果数据集比较小,直接将数据复制到内存中,从内存中读取可以极大加快数据读取的速度。
  • 调整workers数量,过少的线程读取数据会导致速度非常慢,过多线程读取数据可能会由于阻塞也导致速度非常慢。所以需要根据自己机器的情况,尝试不同数量的workers,选择最合适的数量。一般设置为 cpu 核心数或gpu数量
  • 编码的时候要注意尽可能减少CPU和GPU之间的数据传输,使用类似numpy的编码方式,通过并行的方式来处理,可以提高性能。
  • 使用TFRecord或者LMDB等,减少小文件的读写

审核编辑 :李倩

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/3000864.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-09-27
下一篇 2022-09-27

发表评论

登录后才能评论

评论列表(0条)

保存