氢单质是不是半导体材料

氢单质是不是半导体材料,第1张

考点: 元素周期表的结构及其应用 硅的用途 专题:分析: A、原子半径最小的元素是氢,最大的是第七周期的左边元素;B、晶体硅是很好的半导体材料,在电子制造业中广泛应用;C、副族元素全是金属元素;D、稀有气体元素,最外层都达2电子和8电子的稳定结构,性质稳定,通常情况下很难与其它物质反应,但在一定条件下也可以与氟等活泼非常强的物质形成化合物. A、原子半径最小的元素是氢,最大的是第七周期的左边元素,而不是钠,故A错误;B、晶体硅是很好的半导体材料,在电子制造业中广泛应用,故B正确;C、副族元素全是金属元素,没有非金属,故C正确;D、稀有气体元素,最外层都达2电子和8电子的稳定结构,性质稳定,通常情况下很难与其它物质反应,但在一定条件下也可以与氟等活泼非常强的物质形成化合物,故D正确;故选A. 点评: 本题考查周期表的结构、原子结构与元素性质等,难度不大,注意规律中的特殊性与基础知识的掌握.

氢确实属于非金属元素,所谓的金属氢,只是说氢在某种条件下具有了金属的性质。

氢属于非金属元素

氢元素在元素周期表中排第一,因为它是原子量最小的元素,原子量为1,仅由一个质子和一个电子构成。氢在常温常压下为气体,并且是最轻的气体,氢气分子由两个氢原子构成。在地球上氢通常以化合物的形式存在,比如水,水由两个氢原子和一个氧原子构成。

氢元素总共有三种同位素,分别为氕、氘、氚,。氘的原子核中包含一个质子和一个中子,即原子量为2。氚的原子量为3,原子核中有两个中子。通常所说的氢就是指的氕,因为它占自然界中氢的总量的99.98%。

在宇宙中,氢是丰度最高的元素,氦次之。以质量论,在宇宙诞生之初,氢大约占宇宙中原子总质量的75%,氦大约占25%。而宇宙中有许多恒星,恒星内部在进行着氢聚变为氦的核聚变反应,随着时间的增长,氢的比例会下降,氦和其它元素的占比会上升。木星主要就是由氢和氦构成的,太阳也一样。

金属与非金属的区别

要想弄明白什么是金属氢,就要先弄明白金属和非金属的区别。金属和非金属,我们通常是以它们在物理化学方面的性质差异和原子结构来区分的。

元素周期表中有100多种元素,非金属元素占了23种,金属元素占了80多种。从元素周期表的界面分布来看,金属元素主要分布在左下区域,而非金属元素主要分布在右上区域。在常温常压下,除了液态汞,其余的金属元素皆为固体;而非金属元素中除了液态的溴,其余皆为固体或者气体。

上图为液态金属汞

上图为液态非金属溴

金属具有金属光泽和延展性,是热和电的良导体,密度较大;而非金属通常是热和电的不良导体,没有金属光泽,密度较小。金属之所以能导电,是因为金属内部存在大量的自由电子。

在化学中,我们用元素的原子得失电子的能力来描述其金属性或者非金属性的强弱。失电子能力越强的原子,金属性越强;得电子能力越强的原子,非金属性越强。氧化还原反应中,一般金属性越强,还原性就越强;反之,非金属性越强,氧化性就越强。

元素的金属性或非金属性与原子的外层电子有关。除了少数几种金属,其余金属原子的最外层电子数均小于4,而非金属元素的原子最外层电子数一般大于4。

实际上,金属与非金属并没有严格的界限,在一定温度或者压力下会发生相变。比如,锡的同素异形体金属锡在低温下会转变成非金属形态的灰锡。元素周期表中位于金属和非金属交叉区域的元素又被称之为类金属(准金属或半金属),它们通常是半导体,包括硅、锗、砷、锑等元素。

金属氢仅存在于超高压环境下

导电性和金属光泽是区分金属和非金属的重要性质之一。当氢在某种条件下具有金属属性时,便称之为金属氢。

早在1934年,科学家就从理论上预测,作为主族元素的氢,在极端条件下会表现出金属性质。要想产生金属氢十分困难,因为氢在大约500万倍标准大气压的压力下才能转变为金属氢,要在地球上的实验室中产生如此高的压力很不容易。

上图展示了固态氢转变为固态金属氢的相变过程

当氢被压缩时,会由气态转变为液态,继续施压就转变为固态,进而形成金属氢。在普通状态下,两个氢原子通过共用电子形成氢分子。在超高压环境下,固态氢中的氢分子结构被破坏,转变为由氢原子构成的金属结构。简单来说,就是在极端条件下,共价键转变成了金属键。此时,固态氢中形成了大量的自由电子,已经具有了导电性,金属结构还使氢具有了金属光泽,因而被称之为金属氢。

金属氢已经不是通常意义下的物质,而是属于简并态物质。由于原子之间的距离被大大的压缩,金属氢的密度比普通氢的密要高上许多倍,与液态水的密度差不多,大约为一克每立方厘米。

金属氢有液态和固态之分,液态金属氢中的质子没有晶格次序。科学家们在地球上制造的金属氢就属于固态金属氢。液态金属氢的存在条件比固态金属氢更为苛刻,不仅需要更强的压力,还需要极高的温度。

金属氢由质子和电子紧密结合而成,具有高密度的特点,蕴含着很大的能量。不过,由于金属氢的存在条件极为苛刻,目前看来应用前景十分渺茫。

木星内部压力极大,温度极高

木星是太阳系内质量和体积最大的行星,是其他七大行星的质量总和的2.5倍,属于气态巨行星。土星、海王星和天王星也属于气态行星。虽然木星被叫做气态行星,但木星的内核仍然是固态的。木星主要由75%的氢和25%的氦构成,在超强的引力作用下,内部压力极大,完全能够存在金属氢。土星作为太阳系内第二大行星,与木星极为相似,内部也存在液态金属氢。

木星的结构由外到内依次为:气态氢、液态氢、液态金属氢、固态岩石内核。

木星内部的金属氢之所以是液态的,是因为木星内部压力极高,是地球大气压的几千万倍,并且木星内部的温度高达上万摄氏度。在这种条件下,金属氢只能以液态形式存在。

热爱科学的朋友,欢迎关注我。

金属氢氢元素的一种存在状态,但不要认为金属氢是固体的,其实大部分情况下,金属氢都是液体(想想水银)。

为什么叫“金属”?

金属氢之所以被称为“金属”,是因为氢原子的唯一电子使得它可以表现得就像金属一样可以导电(想想IA族其他金属元素如锂、钠、钾等性质有一定的相似性质),但不同的是金属氢是一种超流体,具有超导性质(没电阻)。

在高压和高温下,金属氢才可以液体而非固体形式存在,科学家们认为,木星、土星和一些大型的气态行星因为内部重力形成的高压就会在其大气层下深处形成大量的金属氢。

上图:从透明的氢气转变为由原子紧密结合成的金属氢。只有钻石可以耐受这个压力强度。

金属氢人工制造出来了吗?

1996年3月,劳伦斯利弗莫尔国家实验室的一组科学家报告说,他们偶然地首次制造出了金属氢,在数千开尔文的高温下压力大约为1 微秒,压力超过1,000,000个大气压,密度约为为0.6克 /厘米3。他们没有想到会产生金属氢,因为他们并不需要在实验中使用金属氢——只是个副产物,何况这实验的运行温度已经高于氢金属化的理论温度上限。之前的研究将固体氢气放在金刚石砧内压缩至高达2,500,000个大气压都没有检测到金属氢的存在。

上图:网络媒体报道《世界上唯一的金属氢样本消失了》

哈佛大学的制备的这丁点金属氢是世界上唯一稳定保存的金属氢样品。这份金属氢气的储存温度约为80开尔文(-193摄氏度和-316华氏度),而用来保存样品的两块钻石之间的压力非常高。

事故发生在2月11日,当时该团队正准备将这个珍贵的样品打包并运送到芝加哥的阿贡国家实验室进行进一步测试。原因可能是之前的一次测试导致钻石产生了破裂(钻石都能破裂?!OMG),从而导致装置失压,研究人员就再也没看到原来的金属色。

但这并不一定意味着制备的金属氢已经被破坏,因为样品厚度仅为1.5微米左右,钻石微孔单元的直径为10微米——是人类头发直径的五分之一(两块钻石凹凸相互挤压), 因此这些金属氢也可能仍然保持稳定并聚集在某处,只是没找到而已。但另一种可能性是,钻石砧的压力泄掉,氢气就会变回气体,这表明金属氢在室压下无法稳定——这是研究预测的情况之一。

上图:金属氢的形成过程和原理示意。从左到右,依次从透明的分子氢到黑色的氢半导体再到原子化的金属氢。

为什么争着制造金属氢?

因为金属氢有这些潜在的用途:

上图:以液氢冷却的金属氢燃料单级火箭的各种参数预估。

结语

人类在实验室类已经多次成功地以不同的方式制造出了金属氢。液氢具有非常多实用价值,我们可以期待在未来数年内科学研究在液氢的制造方面有所突破。

2017年初,哈佛大学研究人员在《科学》上发文称,在高压低温下发现了金属氢,一时轰动科学界。如果这属事实,那么他们毫无疑问将获得诺贝尔奖。

金属氢是一种传说中的物质。元素有金属与非金属的差别,金属一般具有导电性,却具有金属光泽,基本在常温下为固体(只有汞为液体);非金属,则一般为绝缘体,只有极少数属于导体(如碳)和半导体(硅)。

但按照粒子的构成,元素之间是能够在压力之下进行转换的,也就是说,金属可以变非金属,非金属也可以变成金属。如 在大约20年前, 分子氧已经被证明在大约100万倍大气压下变成了一种金属。

那接下来的问题就来了,氢,这种非金属,能变成金属吗?

80年前,科学家们就做出了这样的结论,但直到今天,我们还没有亲眼见到过金属氢。按照科学家们的论断,在太阳等恒星,以及行星内核,都有金属氢的存在。

理论应该是正确的,那么怎么才能把氢变成金属氢呢?

首先是极高的压力,大约相当于488万个大气压,然后还需要-200°上的低温,才能得到金属氢。哈佛大学正是在这一温度下宣布制成了金属氢的。

这是一个很神奇的过程,氢原子在高压之下排列越来越紧密,越来越紧密,最终它们肩并肩地占到了一起,最终也从透明变成了不透明。

金属氢如果一旦能够制备,那人类的材料史将会向前迈进超级一大步。

金属氢是一种类似金刚石(钻石),具有亚稳态的特性,即一旦形成,就不会再变回气体氢。而金属氢因为没有电阻,所以人类可以用它来实现梦寐以求的0损耗输电。

同时,以为金属氢里含有超级大的能量(形成过程耗费极大能量),所以它将是人类能源史的一次革命。火箭飞天如果用金属氢,那去个火星将不再困难。

好玩又有趣的科普知识,欢迎关注本姑娘!

2017年1月26日,美国研究人员宣布可能最终能够产生金属氢,这是一种复杂而难以捉摸的状态,金属氢最早是在80多年前理论化的。

美国哈佛大学的兰加·迪亚斯博士和艾萨克·西尔维拉教授成功地将氢气冷却到-268℃,同时将其压缩到令人震惊的480万个大气压。

难以置信的高压是通过使用钻石砧座实现的。但这不是一个简单的方法。多年来,科学家们一直试图应对这种压力,直到现在科学家们才做到正确的设置。

金属氢以前从未制造过,因为钻石在达到足够高的压力之前就已经失效了,科学家不使用天然钻石,而是使用非常均匀的合成钻石,天然钻石具有不均匀性、内部缺陷和杂质。

标准状态下氢是一种分子气体,其原子成对结合,每个原子与另一个原子共享一个电子。当氢被放在钻石砧座之间时,压力增加。

在320万大气压的压力下,氢气变得不透明(因此得名黑色氢)并且也是半导体。但是只有更高的压力才能破坏分子键并产生金属氢相。这种气体似乎变成了金属,具有金属原子所具有的预期特性。科学家认为金属氢是固体,但无法通过实验证实这一点。

确认该实验是否可重复非常关键。虽然美国科学家非常自信,但其他人对此表示怀疑。

氢的这一特殊阶段最早是在1935年由魏格纳和亨廷顿预测出来的,从那时起,实现这一点就成了“高压物理学的圣杯”。但是维格纳和亨廷顿对必要压力的估计是错误的。他们认为金属氢可以在250000个大气压的压力下获得,几乎比哈佛研究人员声称的要小20倍。

为了科学,创造金属氢的能力不仅仅是科学的胜利。理解宇宙中最丰富元素的金属性质具有多学科影响。

金属氢被认为在压力消除后在室温下是亚稳定的,因此可以用于核聚变。它也被认为是高温超导体,如果得到证实,这将是一个超级性的突破。甚至天文学也可能从这一发现中受益——木星、土星和系外行星的核心可能由金属氢构成。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/6241577.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-19
下一篇 2023-03-19

发表评论

登录后才能评论

评论列表(0条)

保存