PN结的形成:
PN结是由一个N型掺杂区和一个P型掺杂区紧密接触所构成的,其接触界面称为冶金结界面。
在一块完整的硅片上,用不同的掺杂工艺使其一边形成N型半导体,另一边形成P型半导体,我们称两种半导体的交界面附近的区域为PN结。
在P型半导体和N型半导体结合后,由于N型区内自由电子为多子空穴几乎为零称为少子,而P型区内空穴为多子自由电子为少子,在它们的交界处就出现了电子和空穴的浓度差。
由于自由电子和空穴浓度差的原因,有一些电子从N型区向P型区扩散,也有一些空穴要从P型区向N型区扩散。
它们扩散的结果就使P区一边失去空穴,留下了带负电的杂质离子,N区一边失去电子,留下了带正电的杂质离子。
开路中半导体中的离子不能任意移动,因此不参与导电。这些不能移动的带电粒子在P和N区交界面附近,形成了一个空间电荷区,空间电荷区的薄厚和掺杂物浓度有关。
在空间电荷区形成后,由于正负电荷之间的相互作用,在空间电荷区形成了内电场,其方向是从带正电的N区指向带负电的P区。显然,这个电场的方向与载流子扩散运动的方向相反,阻止扩散。
另一方面,这个电场将使N区的少数载流子空穴向P区漂移,使P区的少数载流子电子向N区漂移,漂移运动的方向正好与扩散运动的方向相反。
从N区漂移到P区的空穴补充了原来交界面上P区所失去的空穴,从P区漂移到N区的电子补充了原来交界面上N区所失去的电子,这就使空间电荷减少,内电场减弱。因此,漂移运动的结果是使空间电荷区变窄,扩散运动加强。
最后,多子的扩散和少子的漂移达到动态平衡。在P型半导体和N型半导体的结合面两侧,留下离子薄层,这个离子薄层形成的空间电荷区称为PN结。
PN结的内电场方向由N区指向P区。在空间电荷区,由于缺少多子,所以也称耗尽层。
扩展资料:
Pn结采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称为PN结(英语:PN junction)。
PN结具有单向导电性,是电子技术中许多器件所利用的特性,例如半导体二极管、双极性晶体管的物质基础。
PN 结的击穿机理
PN 结构成了几乎所有半导体功率器件的基础,目前常用的半导体功率器件如DMOS,IGBT,SCR 等的反向阻断能力都直接取决于 PN 结的击穿电压,因此,PN 结反向阻断特性的优劣直接决定了半导体功率器件的可靠性及适用范围。
在 PN结两边掺杂浓度为固定值的条件下,一般认为除 super junction 之外平行平面结的击穿电压在所有平面结中具有最高的击穿电压。
实际的功率半导体器件的制造过程一般会在 PN 结的边缘引入球面或柱面边界,该边界位置的击穿电压低于平行平面结的击穿电压,使功率半导体器件的击穿电压降低。
由此产生了一系列的结终端技术来消除或减弱球面结或柱面结的曲率效应,使实际制造出的 PN 结的击穿电压接近或等于理想的平行平面结击穿电压。
当 PN 结的反向偏压较高时,会发生由于碰撞电离引发的电击穿,即雪崩击穿。存在于半导体晶体中的自由载流子在耗尽区内建电场的作用下被加速其能量不断增加,直到与半导体晶格发生碰撞,碰撞过程释放的能量可能使价键断开产生新的电子空穴对。
新的电子空穴对又分别被加速与晶格发生碰撞,如果平均每个电子(或空穴)在经过耗尽区的过程中可以产生大于 1 对的电子空穴对,那么该过程可以不断被加强,最终达到耗尽区载流子数目激增,PN 结发生雪崩击穿。
参考资料 :百度百科----PN结
当 N 型半导体和 P 型半导体材料首次结合在一起时,PN 结两侧之间存在非常大的密度梯度。结果是,来自施主杂质原子的一些自由电子开始迁移穿过这个新形成的结,以填充 P 型材料中的空穴,从而产生负离子。然而,由于电子已经从 N 型硅穿过 PN 结移动到 P 型硅,它们在负侧留下带正电的施主离子 ( N D ),现在来自受主杂质的空穴迁移穿过反方向的结进入有大量自由电子的区域。
结果,沿结的 P 型电荷密度被带负电的受体离子( N A )填充,沿结的 N 型电荷密度变为正。这种跨越 PN 结的电子和空穴的电荷转移称为扩散。这些 P 层和 N 层的宽度取决于每一侧分别掺杂受主密度N A和施主密度N D的程度。
这个过程来回持续,直到已经穿过结的电子数量具有足够大的电荷以排斥或阻止任何更多的电荷载流子穿过结。最终将出现平衡状态(电中性情况),当供体原子排斥空穴而受体原子排斥电子时,在结区域周围产生一个“势垒”区域。
由于没有自由电荷载流子可以停留在存在势垒的位置,因此与远离结的 N 和 P 型材料相比,结两侧的区域现在完全耗尽了任何更多的自由载流子。PN 结周围的这个区域现在称为耗尽层。
PN 结每一侧的总电荷必须相等且相反,才能在结周围保持中性电荷状态。如果耗尽层区域的距离为D,则它因此必须在正极侧穿透Dp的距离,在负极侧穿透Dn的距离,给出两者之间的关系: Dp*N A = Dn*N D 以保持电荷中性也称为平衡。
由于 N 型材料失去了电子而 P 型材料失去了空穴,因此 N 型材料相对于 P 型变为正。然后,在结的两侧存在杂质离子会导致在该区域上建立电场,N 侧相对于 P 侧处于正电压。现在的问题是,自由电荷需要一些额外的能量来克服现在存在的势垒,才能穿过耗尽区结。
在PN结的两端之间施加一个合适的正向电压(正向偏压)可以为自由电子和空穴提供额外的能量。克服目前存在的这种势垒所需的外部电压在很大程度上取决于所使用的半导体材料的类型及其实际温度。
通常在室温下,硅耗尽层两端的电压约为 0.6 – 0.7 伏,锗约为 0.3 – 0.35 伏。即使设备没有连接到任何外部电源,这种势垒也始终存在,如二极管所示。
这种跨结的内置电位的意义在于它反对空穴和电子穿过结的流动,这就是为什么它被称为势垒的原因。在实践中,PN 结是在单晶材料中形成的,而不是简单地将两个单独的部件连接或熔合在一起。
这一过程的结果是 PN 结具有整流电流-电压(IV 或 I-V)特性。电触点熔接到半导体的任一侧,以现与外部电路的电连接。制成的电子器件通常称为PN 结二极管或简称为信号二极管。
然后我们在这里看到,可以通过将不同掺杂的半导体材料连接或扩散在一起来制造 PN 结,以生产称为二极管的电子器件,该器件可用作整流器、所有类型的晶体管、LED、太阳能电池的基本半导体结构,以及更多这样的固态设备。
P型半导体空穴多,容易吸引电子但原子核电荷不够,会形成负电荷。
N型半导体电子多,电子容易逃跑且原子核电荷太多,会形成正电荷。
P(Positive)型半导体和N(Negative)型半导体构成PN结以后,会扩散出一个内电场,也叫PN结、阻挡层、耗尽层、空间电荷区。
电子受到电场力作用会漂移向N级,但N级电子太多,还是会向P级扩散。两种运动形成了动态平衡。
扩展资料:
PN结主要特征:
1、反向击穿性
PN结加反向电压时,空间电荷区变宽,区中电场增强。反向电压增大到一定程度时,反向电流将突然增大。如果外电路不能限制电流,则电流会大到将PN结烧毁。反向电流突然增大时的电压称击穿电压。基本的击穿机构有两种,即隧道击穿(也叫齐纳击穿)和雪崩击穿,前者击穿电压小于6V,有负的温度系数,后者击穿电压大于6V,有正的温度系数。
雪崩击穿:阻挡层中的载流子漂移速度随内部电场的增强而相应加快到一定程度时,其动能足以把束缚在共价键中的价电子碰撞出来,产生自由电子—空穴对,新产生的载流子在强电场作用下,再去碰撞其它中性原子,又产生新的自由电子—空穴对,如此连锁反应,使阻挡层中的载流子数量急剧增加,象雪崩一样。
雪崩击穿发生在掺杂浓度较低的PN结中,阻挡层宽,碰撞电离的机会较多,雪崩击穿的击穿电压高。
齐纳击穿:齐纳击穿通常发生在掺杂浓度很高的PN结内。由于掺杂浓度很高,PN结很窄,这样即使施加较小的反向电压(5V以下),结层中的电场却很强(可达2.5×105V/m左右)。在强电场作用下,会强行促使PN结内原子的价电子从共价键中拉出来,形成"电子一空穴对",从而产生大量的载流子。它们在反向电压的作用下,形成很大的反向电流,出现了击穿。显然,齐纳击穿的物理本质是场致电离。
采取适当的掺杂工艺,将硅PN结的雪崩击穿电压可控制在8~1000V。而齐纳击穿电压低于5V。在5~8V之间两种击穿可能同时发生。
热电击穿:当pn结施加反向电压时,流过pn结的反向电流要引起热损耗。反向电压逐渐增大时,对于一定的反向电流所损耗的功率也增大,这将产生大量热量。如果没有良好的散热条件使这些热能及时传递出去,则将引起结温上升。这种由于热不稳定性引起的击穿,称为热电击穿。
击穿电压的温度特性:温度升高后,晶格振动加剧,致使载流子运动的平 均自由路程缩短,碰撞前动能减小,必须加大反向电压才能发生雪崩击穿具有正的温度系数,但温度升高,共价键中的价电子能量状态高,从而齐纳击穿电压随温度升高而降低,具有负的温度系数。
2、单向导电性
(1)PN结加正向电压时导通
如果电源的正极接P区,负极接N区,外加的正向电压有一部分降落在PN结区,PN结处于正向偏置。电流便从P型一边流向N型一边,空穴和电子都向界面运动,使空间电荷区变窄,电流可以顺利通过,方向与PN结内电场方向相反,削弱了内电场。于是,内电场对多子扩散运动的阻碍减弱,扩散电流加大。扩散电流远大于漂移电流,可忽略漂移电流的影响,PN结呈现低阻性。 [6]
(2)PN结加反向电压时截止
如果电源的正极接N区,负极接P区,外加的反向电压有一部分降落在PN结区,PN结处于反向偏置。则空穴和电子都向远离界面的方向运动,使空间电荷区变宽,电流不能流过,方向与PN结内电场方向相同,加强了内电场。内电场对多子扩散运动的阻碍增强,扩散电流大大减小。此时PN结区的少子在内电场作用下形成的漂移电流大于扩散电流,可忽略扩散电流,PN结呈现高阻性。
在一定的温度条件下,由本征激发决定的少子浓度是一定的,故少子形成的漂移电流是恒定的,基本上与所加反向电压的大小无关,这个电流也称为反向饱和电流。
PN结加正向电压时,呈现低电阻,具有较大的正向扩散电流;PN结加反向电压时,呈现高电阻,具有很小的反向漂移电流。由此可以得出结论:PN结具有单向导电性。
参考资料:百度百科-PN结
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)