常见的云服务器管理工具:
1、远程桌面连接
Remote Desktop - 远程桌面连接主要是用于对远程托管的服务器进行远程管理,使用非常方便,如同 *** 作本地电脑一样方便。远程服务器端必须要先安装“远程桌面连接”的服务器端程序,然后客户端可以通过远程桌面来管理服务器了。
2、FTP服务软件和客户端
服务器FileZilla-将客户端的文件上传到服务器上,这个最常用的软件是FTP了,微软的IIS自带了一个简单的FTP服务器管理软件,如果觉得不好用,服务器上也可以安装免费的FileZilla服务器管理软件,客户端可以使用免费的FileZilla Client,支持多线程上传文件。
3、Arp防火墙
Arp Firewall - 现在托管服务器必须安装的个软件是Arp防火墙,没办法啊,中国这网络环境,不安装Arp防火墙等着被人挂木马了。现在免费的Arp防火墙主要有两款,一个是奇虎的360 Arp防火墙,一个是金山Arp防火墙。
4、硬件检测
CPU-Z - CPU-Z是一款免费的系统检测工具,可以检测CPU、主板、内存、系统等各种硬件设备的信息。它支持的CPU种类相当全面,软件的启动速度及检测速度都很快。另外,它还能检测主板和内存的相关信息,其中有我们常用的内存双通道检测功能。远程管理服务器的时候,使用这个软件可以对服务器的硬件信息一清二楚。
5、流量监控
DU Meter - DU Meter是一个简单易用的网络流量监视工具,图形化的界面显示非常直观,可以实时监测服务器的上传和下载的网速,同时还有流量统计功能。可以分析出日流量、周流量、月流量等累计统计数据。不过遗憾的是这个软件不是免费的。
6、进程监控
Process Explorer - Process Explorer是一款免费的进程监视工具,功能比Windows自带的任务管理器要强大的多,不仅可以监视、暂停、终止进程,还可以查看进程调用的DLL文件,是预防病毒、查杀木马的好帮手。
7、日志分析
WebLog Expert - 虽然Google Analytics是一款强大的免费的网站分析服务,但必须加入统计代码才能使用,WebLog Expert则可以直接分析网站的访问日志文件,通过日志文件分析出网站的站点访问者、活动统计、文件访问量、搜索引擎、浏览器、 *** 作系统和错误页面等等众多的统计信息,是网络监测的好助手。这个软件本身不免费,不过其另一个版本WebLog Expert Lite是免费的。
8、日志搜索
WinHex - WinHex是一款速度很快的文件编辑器。打开数百兆的大型文件速度飞快,使用WinHex可以轻松打开服务器上的大型日志文件,并对其进行关键字搜索,效果非常好,是我见到的速度的文本编辑搜索软件,总体来说是一款非常不错的16进制编辑器。
9、代码编辑
Notepad++ - Notepad++是一个免费开源的源程序代码、HTML网页代码编辑工具,支持多达数十种常见源代码或脚本的语法,包括C,C++,Java,C#,XML,HTML,PHP,Javascript,RC resource file,makefile,ASCII,doxygen,ini file,batch file,ASP ,VB/VBS,SQL,Objective-C,CSS,Pascal,Perl,Python,Lua等,功能非常强大。在服务器上安装后可以直接修改网站上的源程序代码。
java图形化界面还是有很多内容要学习的,可以参考 如下实例:
public class Test extends JFrame{MyPanel mp=null;
public static void main(String[] args){
// TODO Auto-generated method stub
Test jf= new Test();
}
public Test(){
mp=new MyPanel();
thisadd(mp);
//设置标题
thissetTitle("绘图");
//设置窗体大小
thissetSize(400, 300);
//设置窗体的位置
thissetLocation(100,100);
//限制窗体的大小
thissetResizable(false);
//关闭窗体时,同时退出java虚拟机
thissetDefaultCloseOperation(JFrameEXIT_ON_CLOSE);
//显示窗体
thissetVisible(true);
}
}
//定义一个MyPanel(我自己的面板,用于绘图和实现绘图区域)
class MyPanel extends JPanel
{
//覆盖JPanel的paint方法
//Graphics是绘图的重要类,可以把它理解成一只画笔
public void paint(Graphics g)
{
//1。调用父类函数完成初始化
superpaint(g);
// //画圆
// gdrawOval(100, 100, 20, 20);
// //画直线
// gdrawLine(50, 150,150, 200);
// //画矩形边框
// gdrawRect(150, 150, 30, 40);
//
// //设置颜色。默认为黑色
// gsetColor(Colorblue);
// //填充矩形
// gfillRect(10, 10, 20, 30);
//画弧形
gdrawArc(200,10, 100,150, 120,-80);
//在面板上画
Image im=ToolkitgetDefaultToolkit()getImage(PanelclassgetResource("路径"));
//显示
gdrawImage(im, 10, 10,200,180,this);
//画字
gsetColor(Colorred);
gsetFont(new Font("华文彩云",FontBOLD,20));
gdrawString("要写的字", 80,220);
}
}制作镜像前需配置镜像制作环境,需根据云平台类型选择,这里不做赘述。本文使用的是Linux自带的软件工具virt-manager。
本文阐述的镜像制作方法, 简称本方法。主要是针对国产化 *** 作系统的镜像制作,制作出来的镜像供国产化云平台使用,也可以在其他云平台使用。镜像制作过程大致包含以下几个步骤:
1 获取 *** 作系统文件
2 使用国产 *** 作系统创建虚拟机
3 系统安装
4 网络配置
5 云平台所需软件包安装
6 镜像压缩及保存
系统不同,设置默认用户、系统分区、网络配置的顺序略有不同,以实际 *** 作为准。本文以统信UOS 20 sp1版本为例,讲述国产云平台虚拟机的镜像制作方法。
1 获取 *** 作系统文件
获取 *** 作系统文件需注意根据系统cpu架构选择对应架构的 *** 作系统。目前国产化支持的架构有ARM、X86、MIPS、Alpha, 其中ARM/MIPS/Power/ALPHA均是基于精简指令集机器处理器的架构;X86则是基于复杂指令集的架构。本文所述的国产化云平台采用的是寄居架构的虚拟化技术,即在 *** 作系统之上安装和运行虚拟化程序,这样虚拟机的系统依赖于物理机的 *** 作系统虚拟机的 *** 作系统需与物理机兼容,如果架构不一致,无法正常运行。
2 使用国产 *** 作系统创建虚拟机
加载 *** 作系统的安装CD或者DVD ISO文件。如下图所示,安装方式选择本地镜像源。
选中所需要的ISO文件为启动镜像,需设置系统版本。
设置内存、CPU和虚拟机根磁盘的大小。内存建议1024 即1G, cpu建议1, 根磁盘建议20G, 磁盘类型设置为VirtIO。 这里设置的内存、cpu和根磁盘大小就是云平台虚拟机支持的最小配置,所以不建议太大。不然会造成诸多资源的浪费。
对虚拟机进行自定义配置。未其配置输入(键盘、鼠标和tablet),vnc以及video 、设置启动顺序,如下图
设置虚拟机的启动顺序为从虚拟光驱引导启动:
设置完毕后点击“Begin Installation”后开始安装。
3 系统安装
以统信uos系统制作为例:
Uos系统设置主要是指系统语言设置、安装环境选择、安装位置选择等。出现引导界面,选择安装uos
等待加载文件,可能需要1分钟左右,稍作等待。
选择安装语言,建议选择简体中文(银河麒麟由于编解码问题建议选择英文):
根据需要选择安装基本环境。云平台虚拟机建议选择最小安装或图形化服务器。 最小 化 安装 就是, 安装 最基本的程序,使之可以运行,但有些扩展模块不 安装 。图形化服务器预装了图形化界面gui以及服务器需要的必要软件。桌面服务器供终端使用,预制了gui界面。
到安装位置处,选择手动安装。添加分区。选择盘,点击右侧加号开始设置分区。
选择分区属性。文件系统、挂载点以及大小。大小可以手动输入。设置完毕后点击新建。
最终设置分区如下图所示。Vda1类型 为ext4,挂载点为/boot, 建议大小300MB。 Vda2类型 为efi, 建议大小300MB。 Vda3类型 为交换空间,
, 建议大小2048MB 。 Vda4类型 为ext4, 挂载/ 。交换空间可以不要,根分区必须在最后,方便云平台的虚拟机创建后自动进行根目录扩容。分区类型建议不要选择lvm, 选择lvm后需要手动进行磁盘扩容,适合少量的虚拟机。国产系统多采用UEFI引导系统需要增加分区/boot/efi分区。
安装位置确定后选择开始安装。
等待安装完成。
安装完成,点击立即体验, 系统开始重启。
关闭虚机。修改启动方式为从磁盘启动,再启动虚机
选择时区
设置登录用户名和密码。
等待优化系统配置
之后使用设置的用户名密码登录。
登录系统后需进行系统配置,检查防火墙和selinux是否关闭,如果没有关闭需关闭。关闭命令:
sed -i's/SELINUX=enforcing/SELINUX=disabled/' /etc/selinux/config
setenforce 0
为保障虚拟机可通过密码访问,需修改ssh配置文件。允许密码访问和允许root管理员登录。修改/etc/ssh/sshd_config 修改以下参数后重启sshd服务。
PermitRootLogin yes
PasswordAuthentication yes
4 网络配置
为下一步安装软件的需要,虚机需要联通网络,所以需要配置网络,主要包括配置 ip地址、网关、掩码和dns服务器。UOS启动后自动获取了地址和DNS服务器。如下图。如果虚机不能上网, 可以跳过本步骤。配置成功的网络如下图:
Ping 是否通
5 安装云平台软件
云平台需要的软件有cloud-init,cloud-guest-utils 和qemu-guest-agent
(1)镜像源设置
#统信uos镜像源地址:
#修改/etc/apt/sourceslist文件,
deb [by-hash=force] >问题
UOS公有云开放以来,一些用户反应用dd命令测试出来的1TB云硬盘的吞吐率(MBPS)只有128MB/s,而不是我们SLA保证的170MB /s ,这是为什么?下面我会简单介绍如何测试硬盘,RAID,SAN,SSD,云硬盘等,然后再来回答上面的问题。
测试前提
我们在进行测试时,都会分清楚:
测试对象:要区分硬盘、SSD、RAID、SAN、云硬盘等,因为它们有不同的特点
测试指标:IOPS和MBPS(吞吐率),下面会具体阐述
测试工具:Linux下常用Fio、dd工具, Windows下常用IOMeter,
测试参数: IO大小,寻址空间,队列深度,读写模式,随机/顺序模式
测试方法:也就是测试步骤。
测试是为了对比,所以需要定性和定量。在宣布自己的测试结果时,需要说明这次测试的工具、参数、方法,以便于比较。
存储系统模型
为了更好的测试,我们需要先了解存储系统,块存储系统本质是一个排队模型,我们可以拿银行作为比喻。还记得你去银行办事时的流程吗?
去前台取单号
等待排在你之前的人办完业务
轮到你去某个柜台
柜台职员帮你办完手续1
柜台职员帮你办完手续2
柜台职员帮你办完手续3
办完业务,从柜台离开
如何评估银行的效率呢:
服务时间 = 手续1 + 手续2 + 手续3
响应时间 = 服务时间 + 等待时间
性能 = 单位时间内处理业务数量
那银行如何提高效率呢:
增加柜台数
降低服务时间
因此,排队系统或存储系统的优化方法是
增加并行度
降低服务时间
硬盘测试
硬盘原理
我们应该如何测试SATA/SAS硬盘呢?首先需要了解磁盘的构造,并了解磁盘的工作方式:
每个硬盘都有一个磁头(相当于银行的柜台),硬盘的工作方式是:
收到IO请求,得到地址和数据大小
移动磁头(寻址)
找到相应的磁道(寻址)
读取数据
传输数据
则磁盘的随机IO服务时间:
服务时间 = 寻道时间 + 旋转时间 + 传输时间
对于10000转速的SATA硬盘来说,一般寻道时间是7 ms,旋转时间是3 ms, 64KB的传输时间是 08 ms, 则SATA硬盘每秒可以进行随机IO *** 作是 1000/(7 + 3 + 08) = 93,所以我们估算SATA硬盘64KB随机写的IOPS是93。一般的硬盘厂商都会标明顺序读写的MBPS。
我们在列出IOPS时,需要说明IO大小,寻址空间,读写模式,顺序/随机,队列深度。我们一般常用的IO大小是4KB,这是因为文件系统常用的块大小是4KB。
使用dd测试硬盘
虽然硬盘的性能是可以估算出来的,但是怎么才能让应用获得这些性能呢?对于测试工具来说,就是如何得到IOPS和MBPS峰值。我们先用dd测试一下SATA硬盘的MBPS(吞吐量)。
#dd if=/dev/zero of=/dev/sdd bs=4k count=300000 oflag=direct
记录了300000+0 的读入 记录了300000+0 的写出 1228800000字节(12 GB)已复制,17958 秒,684 MB/秒
#iostat -x sdd 5 10
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sdd 000 000 000 1679480 000 13435840 800 079 005 005 7882
为什么这块硬盘的MBPS只有68MB/s 这是因为磁盘利用率是78%,没有到达95%以上,还有部分时间是空闲的。当dd在前一个IO响应之后,在准备发起下一个IO时,SATA硬盘是空闲的。那么如何才能提高利用率,让磁盘不空闲呢?只有一个办法,那就是增加硬盘的队列深度。相对于CPU来说,硬盘属于慢速设备,所有 *** 作系统会有给每个硬盘分配一个专门的队列用于缓冲IO请求。
队列深度
什么是磁盘的队列深度?
在某个时刻,有N个inflight的IO请求,包括在队列中的IO请求、磁盘正在处理的IO请求。N就是队列深度。
加大硬盘队列深度就是让硬盘不断工作,减少硬盘的空闲时间。
加大队列深度 -> 提高利用率 -> 获得IOPS和MBPS峰值 -> 注意响应时间在可接受的范围内
增加队列深度的办法有很多
使用异步IO,同时发起多个IO请求,相当于队列中有多个IO请求
多线程发起同步IO请求,相当于队列中有多个IO请求
增大应用IO大小,到达底层之后,会变成多个IO请求,相当于队列中有多个IO请求 队列深度增加了。
队列深度增加了,IO在队列的等待时间也会增加,导致IO响应时间变大,这需要权衡。让我们通过增加IO大小来增加dd的队列深度,看有没有效果:
dd if=/dev/zero of=/dev/sdd bs=2M count=1000 oflag=direct
记录了1000+0 的读入 记录了1000+0 的写出 2097152000字节(21 GB)已复制,106663 秒,197 MB/秒
Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util
sdd 000 000 000 38060 000 38973440 102400 239 628 256 9742
可以看到2MB的IO到达底层之后,会变成多个512KB的IO,平均队列长度为239,这个硬盘的利用率是97%,MBPS达到了197MB/s。(为什么会变成512KB的IO,你可以去使用Google去查一下内核参数 max_sectors_kb的意义和使用方法 )
也就是说增加队列深度,是可以测试出硬盘的峰值的。
使用fio测试硬盘
现在,我们来测试下SATA硬盘的4KB随机写的IOPS。因为我的环境是Linux,所以我使用FIO来测试。
$fio -ioengine=libaio -bs=4k -direct=1 -thread -rw=randwrite -size=1000G -filename=/dev/vdb \
-name="EBS 4K randwrite test" -iodepth=64 -runtime=60
简单介绍fio的参数
ioengine: 负载引擎,我们一般使用libaio,发起异步IO请求。
bs: IO大小
direct: 直写,绕过 *** 作系统Cache。因为我们测试的是硬盘,而不是 *** 作系统的Cache,所以设置为1。
rw: 读写模式,有顺序写write、顺序读read、随机写randwrite、随机读randread等。
size: 寻址空间,IO会落在 [0, size)这个区间的硬盘空间上。这是一个可以影响IOPS的参数。一般设置为硬盘的大小。
filename: 测试对象
iodepth: 队列深度,只有使用libaio时才有意义。这是一个可以影响IOPS的参数。
runtime: 测试时长
下面我们做两次测试,分别 iodepth = 1和iodepth = 4的情况。下面是iodepth = 1的测试结果。
上图中蓝色方框里面的是测出的IOPS 230, 绿色方框里面是每个IO请求的平均响应时间,大约是43ms。**方框表示95%的IO请求的响应时间是小于等于 9920 ms。橙色方框表示该硬盘的利用率已经达到了9858%。
下面是 iodepth = 4 的测试:
我们发现这次测试的IOPS没有提高,反而IO平均响应时间变大了,是17ms。
为什么这里提高队列深度没有作用呢,原因当队列深度为1时,硬盘的利用率已经达到了98%,说明硬盘已经没有多少空闲时间可以压榨了。而且响应时间为 4ms。 对于SATA硬盘,当增加队列深度时,并不会增加IOPS,只会增加响应时间。这是因为硬盘只有一个磁头,并行度是1, 所以当IO请求队列变长时,每个IO请求的等待时间都会变长,导致响应时间也变长。
这是以前用IOMeter测试一块SATA硬盘的4K随机写性能,可以看到IOPS不会随着队列深度的增加而增加,反而是平均响应时间在倍增。
队列深度 IOPS 平均响应时间
1 332931525 3002217
2 333985074 5986528
4 332594653 12025060
8 336568012 23766359
16 329785606 48513477
32 332054590 96353934
64 331041063 193200815
128 331309109 385163111
256 327442963 774401781
寻址空间对IOPS的影响
我们继续测试SATA硬盘,前面我们提到寻址空间参数也会对IOPS产生影响,下面我们就测试当size=1GB时的情况。
我们发现,当设置size=1GB时,IOPS会显著提高到568,IO平均响应时间会降到7ms(队列深度为4)。这是因为当寻址空间为1GB时,磁头需要移动的距离变小了,每次IO请求的服务时间就降低了,这就是空间局部性原理。假如我们测试的RAID卡或者是磁盘阵列(SAN),它们可能会用Cache把这1GB的数据全部缓存,极大降低了IO请求的服务时间(内存的写 *** 作比硬盘的写 *** 作快很1000倍)。所以设置寻址空间为1GB的意义不大,因为我们是要测试硬盘的全盘性能,而不是Cache的性能。
硬盘优化
硬盘厂商提高硬盘性能的方法主要是降低服务时间(延迟):
提高转速(降低旋转时间和传输时间)
增加Cache(降低写延迟,但不会提高IOPS)
提高单磁道密度(变相提高传输时间)
RAID测试
RAID0/RAID5/RAID6的多块磁盘可以同时服务,其实就是提高并行度,这样极大提高了性能(相当于银行有多个柜台)。
以前测试过12块RAID0,100GB的寻址空间,4KB随机写,逐步提高队列深度,IOPS会提高,因为它有12块磁盘(12个磁头同时工作),并行度是12。
队列深度 IOPS 平均响应时间
1 1215995842 0820917
2 4657061317 0428420
4 5369326970 0744060
8 5377387303 1486629
16 5487911660 2914048
32 5470972663 5846616
64 5520234015 11585251
128 5542739816 23085843
256 5513994611 46401606
RAID卡厂商优化的方法也是降低服务时间:
使用大内存Cache
使用IO处理器,降低XOR *** 作的延迟。
使用更大带宽的硬盘接口
SAN测试
对于低端磁盘阵列,使用单机IOmeter就可以测试出它的IOPS和MBPS的峰值,但是对于高端磁盘阵列,就需要多机并行测试才能得到IOPS和MBPS的峰值(IOmeter支持多机并行测试)。下图是纪念照。
磁盘阵列厂商通过以下手段降低服务时间:
更快的存储网络,比如FC和IB,延时更低。
读写Cache。写数据到Cache之后就马上返回,不需要落盘。 而且磁盘阵列有更多的控制器和硬盘,大大提高了并行度。
现在的存储厂商会找SPC帮忙测试自己的磁盘阵列产品(或全闪存阵列), 并给SPC支付费用,这就是赤裸裸的标准垄断。国内也有做存储系统测试的,假如你要测试磁盘阵列,可以找NSTC (广告时间)。
SSD测试
SSD的延时很低,并行度很高(多个nand块同时工作),缺点是寿命和GC造成的响应时间不稳定。
推荐用IOMeter进行测试,使用大队列深度,并进行长时间测试,这样可以测试出SSD的真实性能。
下图是storagereview对一些SSD硬盘做的4KB随机写的长时间测试,可以看出有些SSD硬盘的最大响应时间很不稳定,会飙高到几百ms,这是不可接受的。
云硬盘测试
我们通过两方面来提高云硬盘的性能的:
降低延迟(使用SSD,使用万兆网络,优化代码,减少瓶颈)
提高并行度(数据分片,同时使用整个集群的所有SSD)
在Linux下测试云硬盘
在Linux下,你可以使用FIO来测试
*** 作系统:Ubuntu 1404
CPU: 2
Memory: 2GB
云硬盘大小: 1TB(SLA: 6000 IOPS, 170MB/s吞吐率 )
安装fio:
#sudo apt-get install fio
再次介绍一下FIO的测试参数:
ioengine: 负载引擎,我们一般使用libaio,发起异步IO请求。
bs: IO大小
direct: 直写,绕过 *** 作系统Cache。因为我们测试的是硬盘,而不是 *** 作系统的Cache,所以设置为1。
rw: 读写模式,有顺序写write、顺序读read、随机写randwrite、随机读randread等。
size: 寻址空间,IO会落在 [0, size)这个区间的硬盘空间上。这是一个可以影响IOPS的参数。一般设置为硬盘的大小。
filename: 测试对象
iodepth: 队列深度,只有使用libaio时才有意义。这是一个可以影响IOPS的参数。
runtime: 测试时长
4K随机写测试
我们首先进行4K随机写测试,测试参数和测试结果如下所示:
#fio -ioengine=libaio -bs=4k -direct=1 -thread -rw=randwrite -size=100G -filename=/dev/vdb \
-name="EBS 4KB randwrite test" -iodepth=32 -runtime=60
蓝色方框表示IOPS是5900,在正常的误差范围内。绿色方框表示IO请求的平均响应时间为542ms, **方框表示95%的IO请求的响应时间是小于等于 624 ms的。
4K随机读测试
我们再来进行4K随机读测试,测试参数和测试结果如下所示:
#fio -ioengine=libaio -bs=4k -direct=1 -thread -rw=randread -size=100G -filename=/dev/vdb \
-name="EBS 4KB randread test" -iodepth=8 -runtime=60
512KB顺序写测试
最后我们来测试512KB顺序写,看看云硬盘的最大MBPS(吞吐率)是多少,测试参数和测试结果如下所示:
#fio -ioengine=libaio -bs=512k -direct=1 -thread -rw=write -size=100G -filename=/dev/vdb \
-name="EBS 512KB seqwrite test" -iodepth=64 -runtime=60
蓝色方框表示MBPS为174226KB/s,约为170MB/s。
使用dd测试吞吐率
其实使用dd命令也可以测试出170MB/s的吞吐率,不过需要设置一下内核参数,详细介绍在 128MB/s VS 170MB/s 章节中。
在Windows下测试云硬盘
在Windows下,我们一般使用IOMeter测试磁盘的性能,IOMeter不仅功能强大,而且很专业,是测试磁盘性能的首选工具。
IOMeter是图形化界面(浓浓的MFC框架的味道),非常方便 *** 作,下面我将使用IOMeter测试我们UOS上1TB的云硬盘。
*** 作系统:Window Server 2012 R2 64
CPU: 4
Memory: 8GB
云硬盘大小: 1TB
当你把云硬盘挂载到Windows主机之后,你还需要在windows *** 作系统里面设置硬盘为联机状态。
4K随机写测试
打开IOMeter(你需要先下载),你会看到IOMeter的主界面。在右边,你回发现4个worker(数量和CPU个数相同),因为我们现在只需要1个worker,所以你需要把其他3个worker移除掉。
现在让我们来测试硬盘的4K随机写,我们选择好硬盘(Red Hat VirtIO 0001),设置寻址空间(Maximum Disk Size)为50GB(每个硬盘扇区大小是512B,所以一共是 50102410241024/512 = 104857600),设置队列深度(Outstanding I/Os)为64。
然后在测试集中选择”4KiB ALIGNED; 0% Read; 100% random(4KB对齐,100%随机写 *** 作)” 测试
然后设置测试时间,我们设置测试时长为60秒,测试之前的预热时间为10秒(IOMeter会发起负载,但是不统计这段时间的结果)。
在最后测试之前,你可以设置查看实时结果,设置实时结果的更新频率是5秒钟。最后点击绿色旗子开始测试。
在测试过程中,我们可以看到实时的测试结果,当前的IOPS是6042,平均IO请求响应时间是1056ms,这个测试还需要跑38秒,这个测试轮回只有这个测试。
我们可以看到IOMeter自动化程度很高,极大解放测试人员的劳动力,而且可以导出CSV格式的测试结果。
顺序读写测试
我们再按照上面的步骤,进行了顺序读/写测试。下面是测试结果:
IO大小 读写模式 队列深度 MBPS
顺序写吞吐测试 512KB 顺序写 64 16407 MB/s
顺序读吞吐测试 256KB 顺序读 64 17932 MB/s
云硬盘的响应时间
当前云硬盘写 *** 作的主要延迟是
网络传输
多副本,写三份(数据强一致性)
三份数据都落盘(数据持久化)之后,才返回
IO处理逻辑
我们当前主要是优化IO处理逻辑,并没有去优化2和3,这是因为我们是把用户数据的安全性放在第一位。
128MB/s VS 170MB/s
回到最开始的问题 “为什么使用dd命令测试云硬盘只有128MB/s”, 这是因为目前云硬盘在处理超大IO请求时的延迟比SSD高(我们会不断进行优化),现在我们有两种方法来获得更高的MBPS:
设置max_sectors_kb为256 (系统默认为512),降低延迟
使用fio来测试,加大队列深度
通过设置max_sectors_kb这个参数,使用dd也可以测出170MB/s的吞吐量
root@ustack:~# cat /sys/block/vdb/queue/max_sectors_kb
512
root@ustack:~# echo "256" > /sys/block/vdb/queue/max_sectors_kb
root@ustack:~#
root@ustack:~# dd if=/dev/zero of=/dev/vdb bs=32M count=40 oflag=direct
40+0 records in
40+0 records out
1342177280 bytes (13 GB) copied, 751685 s, 179 MB/s
root@ustack:~#
同时查看IO请求的延迟:
root@ustack:~# iostat -x vdb 5 100
Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await r_await w_await svctm %util
vdb 000 000 000 68800 000 17612800 51200 5459 9347 000 9347 140 9656
下面是使用fio工具的测试结果,也可以得到170MB/s的吞吐率。
不可测试的指标
IOPS和MBPS是用户可以使用工具测试的指标,云硬盘还有一些用户不可测量的指标
数据一致性
数据持久性
数据可用性
这些指标我们只能通过根据系统架构和约束条件计算得到,然后转告给用户。这些指标衡量着公有云厂商的良心,有机会会专门进行介绍。
总结
上面介绍了一下测试工具和一些观点,希望对你有所帮助。
测试需要定性和定量
了解存储模型可以帮助你更好的进行测试
增加队列深度可以有效测试出IOPS和MBPS的峰值
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)