气体的物质状态

气体的物质状态,第1张

理想气体为假想的气体。其特性为:

气体分子间无作用力;气体分子本身不占有体积;气体分子与容器器壁间发生完全d性碰撞。真实气体在愈低压、愈高温的状态,性质愈接近理想气体。最接近理想气体的气体为氦气。

pV=nRT

遵从理想气体状态方程是理想气体的基本特征。理想气体状态方程里有四个变量——气体的压力p、气体的体积V、气体的物质的量n以及温度T和一个常量(R为普适气体恒量,也叫通用气体常数),只要其中三个变量确定,理想气体就处于一个状态,因而该方程叫做理想气体状态方程。温度T和物质的量n的单位是固定不变的,分别为K和mol,而气体的压力p和体积V的单位却有多种取法,这时,状态方程中的常量R的取值(包括单位)也就跟着改变,在进行运算时,千万要注意正确取用R值:

压强(p)的单位 体积(V)的单位 R的取值(包括单位)

标准大气压(atm) 升(L) 0.08206L·atm/mol·K

标准大气压(atm) 立方厘米(cm3) 82.06cm3·atm/mol·K

帕斯卡(Pa) 升(L) 0.008314L·Pa/mol·K

千帕(kPa) 升(L) 8.314L·kPa/mol·K

帕斯卡(Pa) 立方米(m3) 8.314m3·Pa/mol·K

1 atm=101.325kN/m2;1Pa=1N/ m2;1N·m=1J;当各种物理量均采用国际单位(SI)时,R=8.314J/mol·K

例:

由此我们可以计算理想气体在标准状况下的体积

解:

由 pV=nRT得:

V=n·R·t/p

=1mol·8.314L·Pa/mol·K·273.16K/101325Pa

=22.41272L 1810年道尔顿发现,混合气体的总压等于把各组分气体对浓度置于同一容器里所产生的压力之和。这个规律称为道尔顿分压定律。其实,道尔顿分压定律只对理想气体才成立,对于实际气体,由于分子间作用力的存在,道尔顿定律将出现偏差。因此,能满足道尔顿分压定律的气体混合物称为理想气体的理想混合物。

国家测量局颁布的GB102.8—82采纳IUPAC的推荐,规定混合气体中的气体B的分压pB的定义为

pB=xBp

式中xB为气体B的摩尔分数,p为混合气体在同温度下的总压。于是我们又可以得到:

p=p1 +p2 +p3 +p4 +……+pj +pB =∑pj =∑xjp

上式表明,混合气体的总压等于同温度下其组分气体的分压之和,此式可用于任何混合气体。

对于理想气体,将p总V=n总RT

可见分压pB是理想气体B单独占有混合气体的体积V时显示的压力。

例:

混合气体中有4.4gCO2,14gN2,和12.8gO2,总压为2.026×105Pa,求各组分气体的分压。

解:

先求出各组分气体的物质的量分数(摩尔分数),代入上式即可得各组分气体的分压

n(CO2)=4.4g/44g/mol=0.10mol

n(N2)=14g/28g/mol=0.50mol

n(O2)=12.8g/32g/mol=0.40mol

x(CO2)=n(CO2)/[n(CO2)+ n(N2)+ n(O2)]=0.10

x(N2)=n(N2)/[n(CO2)+ n(N2)+ n(O2)]=0.50

x(O2)=n(O2)/[n(CO2)+ n(N2)+ n(O2)]=0.40

p(CO2)=0.10×2.026×105Pa=2.0×104Pa

p(N2)=0.50×2.026×105Pa=1.0×105Pa

p(O2)=0.40×2.026×105Pa=8.1×104Pa 波义耳-马略特定律是指在一定温度下,气体体积和其压强成反比。这可用以下公式表达:

这里V 是指气体的体积,P 指压强,k 为一常数。 查理定律是指当压力保持固定时,气体体积与其温度成正比。即是气体温度一增加,其体积也随之而增大。其数学表达式为:

这里V 是指气体的体积,T 指温度,单位为绝对温标 开尔文(K) 氯气

氯气(Cl2)①颜色\气味\状态:通常情况下为有刺激性气味的黄绿色的气体。

密度:比空气密度大,标况时是71/22.4=3.17g/L 。

③易液化。熔沸点较低,压强为101kPa、温度为-34.6℃时易液化。液态氯为金黄色。如果将温度继续冷却到-101℃时,液氯变成固态氯。

④溶解性:易溶于有机溶剂,难溶于饱和食盐水。1体积水在常温下可溶解2体积氯气,形成氯水,产生的次氯酸具有漂白性,可使蛋白质变质,且见光易分解为氯化氢。

氟气

氟气

氟气是一种极具腐蚀性的淡黄色双原子气体。氟是电负度最强的元素,也是很强的氧化剂。在常温下,它几乎能和所有的元素化合,并产生大量的热能,在所有的元素中,要算氟最活泼了。

氟气(F2)是淡黄色的气体,有特殊难闻的臭味,剧毒。在-188℃以下,凝成黄色的液体。在-223℃变成黄色结晶体。在常温下,氟几乎能和所有的元素化合:大多数金属都会被氟腐蚀,碱金属在氟气中会燃烧,甚至连黄金在受热后,也能在氟气中燃烧!许多非金属,如硅、磷、硫等同样也会在氟气中燃烧。如果把氟通入水中,它会把水中的氢夺走,放出原子氧(2F2+2H20=4HF+O2↑)。例外的只有铂,在常温下不会被氟腐蚀(高温时仍被腐蚀),因此,在用电解法制造氟时,便用铂作电极。

在原子能工业上,氟有着重要的用途:人们用氟从铀矿中提取铀235,因为铀和氟的化合物很易挥发,用分馏法可以把它和其它杂质分开,得到十分纯净的铀235。铀235是制造原子d的原料。在铀的所有化合物中,只有氟化物具有很好的挥发性能。

氟最重要的化合物是氟化氢。氟化氢很易溶解于水,水溶液叫氢氟酸,这正如氯化氢的水溶液叫氢氯酸(俗名叫盐酸)一样。氢氟酸都是装在聚乙烯塑料瓶里的。如果装在玻璃瓶里的话,过一会儿,整个玻璃瓶都会被它溶解掉——因为它能强烈地腐蚀玻璃(4HF+SiO2=SiF4+2H20)。人们便利用它的这一特性,先在玻璃上涂一层石蜡,再用刀子划破蜡层刻成花纹,涂上氢氟酸。过了一会儿,洗去残余的氢氟酸,刮掉蜡层,玻璃上便出现美丽的花纹。玻璃杯上的刻花、玻璃仪器上的刻度,都是用氢氟酸“刻”成的。由于氢氟酸会强烈腐蚀玻璃,所以在制造氢氟酸时不能使用玻璃的设备,而必须在铅制设备中进行。

在工业上,氟化氢大量被用来制造聚四氟乙烯塑料。聚四氟乙烯号称“塑料之王”,具有极好的耐腐蚀性能,即使是浸在王水中,也不会被侵蚀。它又耐250℃以上的高温和-269.3℃以下的低温。在原子能工业、半导体工业、超低温研究和宇宙火箭等尖端科学技术中,有着重要的应用。我国在1965年已试制成功“聚四氟乙烯”。聚四氟乙烯的表面非常光滑,滴水不沾。人们用它来制造自来水笔的笔尖,吸完墨水后,不必再用纸来擦净墨水,因为它表面上一点墨水也不沾。氟化氢也被用来氟化一些有机化合物。著名的冷冻剂“氟利昂”,便是氟与碳、氯的化合物。在酿酒工业上,人们用氢氟酸杀死一些对发酵有害的细菌。

氢氟酸的盐类,如氟化锶、氟化钠、氟化亚锡等,对乳酸杆菌有显著的抑制能力,被用来制造防龋牙膏。常见的“氟化锶”牙膏,便含有大约千分之一的氟化锶。

在大自然中,氟的分布很广,约占地壳总重量的万分之二。最重要的氟矿是萤石——氟化钙。萤石很漂亮,有玻璃般的光泽,正方块状,随着所含的杂质不同,有淡黄、浅绿、淡蓝、紫、黑、红等色。我国在古代便已知道萤石了,并用它制作装饰品。萤石大量被用来制造氟化氢和氟。在炼铝工业上,也消耗大量的萤石,因为用电解法制铝时,加入冰晶石(较纯的氟化钙晶体)可降低氧化铝的熔点。天然的冰晶石很少,要用萤石作原料来制造。除了萤石外,磷灰石中也含有3%的氟。土壤中约平均含氟万分之二,海水中含氟约一千万分之一。

在人体中,氟主要集中在骨骼和牙齿。特别是牙齿,含氟达万分之二。牡蛎壳的含氟量约比海水含氟量高二十倍。植物体也含氟,尤其是葱和豆类含氟最多。

溴蒸汽

参见溴

碘蒸汽

参见碘

一氧化碳

参见一氧化碳

二氧化氮

参见二氧化氮

二氧化硫

参见二氧化硫

汞蒸气

参见汞

氰气(CN)2

氰,也称氰气,化学式为(CN)2,是碳和氮的化合物(N≡C—C≡N)。

氰在标准状况下是无色气体,带苦杏仁气味,极毒。燃烧时呈桃红色火焰,边缘侧带蓝色。氰溶于水、乙醇、乙醚。

氰的化学性质与卤素很相似,是拟卤素(或类卤素)的一种。氰气会被还原为毒性极强的氰化物。氰在高温下与氢气反应生成氰化氢。与氢氧化钾反应生成氰化钾和氰酸钾。氰加热至400℃以上聚合成不溶性的白色固体(CN)x。

氰可由加热氰化汞或氰化钾溶液慢慢滴入硫酸铜溶液中制得。

氰可用于有机合成,也用作消毒、杀虫的熏蒸剂。

氰化氢

氰化氢(HCN)是一种无色气体,极毒,带有淡淡的苦杏仁味。有趣的是,有四成人根本就闻不到它的味道,仅仅因为缺少相应的基因。氰化钾和氰化钠都是无色晶体,在潮湿的空气中,水解产生氢氰酸而具有苦杏仁味。

氟化氢

参见氢氟酸 氯气(Cl2) 颜色\气味\状态:通常情况下为有强烈刺激性气味的黄绿色的有毒气体。 密度:氯气密度是空气密度的2.5倍,标况下ρ=3.21kg/m&sup3 易液化。熔沸点较低,常温常压下,熔点为-101.00°C,沸点-34.05°C,常温下把氯气加压至600~700kPa或在常压下冷却到-34°C都可以使其变成液氯,液氯即Cl2,液氯是一种油状的液体。其与氯气物理性质不同,但化学性质基本相同。 溶解性:可溶于水,且易溶于有机溶剂(例如:四氯化碳),难溶于饱和食盐水。1体积水在常温下可溶解2体积氯气,形成氯水(通常情况下氯水呈黄绿色),密度为3.170g/L,比空气密度大。 相对分子质量:70.9(71) 2二氧化氮二氧化氮是一种棕红色、高度活性的气态物质。化学分子式为NO2,红棕色气体。密度1.491,溶点-9.3℃,能溶于水,是一种强氧化剂。在17℃以下经常是两个分子结合在一起,所以又称“四氧化二氮或过氧化氮(N2O4)”。 二氧化氮(NO2)

在21.1℃温度时为棕红色刺鼻气体。有毒气体.密度比空气大易液化。易溶于水;在21.1℃以下时呈暗褐色液体。在-11℃以下温度时为无色固体,加压液体为四氧化二氮。分子量92,熔点-11.2℃,沸点21.2℃,蒸气压101.31kPa(21℃),溶于碱、二硫化碳和氯仿,易溶于水。性质较稳定。二氧化氮不是酸性氧化物。二氧化氮密度比空气大

氟气(F2)

氟气,元素氟的气体单质,化学式F2,淡黄色,腐蚀性非常强,甚至能与极不活泼的金发生反应。氟,化学元素,符号F,化学性质十分活泼,具有很强的氧化性。

溴蒸气(Br2)

溴(拉丁语:Bromum,源于希腊语:βρ?μο?,意为“公山羊的恶臭”,是一个化学元素,元素符号Br,原子序数 35,是一种卤素。溴分子在标准温度和压力下是有挥发性的红棕色液体,活性介于氯与碘之间。纯溴也称溴素。溴蒸气具有腐蚀性,并且有毒。颜色与二氧化氮类似为棕色。

碘蒸气(I)

单质碘呈紫黑色晶体,易升华,升华后易凝华。有毒性和腐蚀性。碘单质遇淀粉会变蓝紫色。加热时,碘升华为紫色蒸汽,这种蒸气有刺激性臭味,有毒。冷却后凝华成紫黑色固体,即碘单质。

臭氧(O3)

臭氧是氧的同素异形体,在常温下,它是一种有特殊臭味的蓝色气体。

三氧化二氮(N2O3)

三氧化二氮,氮的氧化物,一种酸性氧化物,有毒,环境污染物之一,是亚硝酸的酸酐。红棕色气体,低温时为深蓝色挥发性液体或蓝色固体。其他气态金属大部分有色。注意稀有气体全为无色。 气体的密度 气体的密度 (单位:10千克/米) 名称 0℃,标准大气压下,密度 液态时密度 固体时 温度℃ 密度 温度℃ 密度 氢 0. 00009 -252. 8 0. 0708 -262 0. 0808 氮 0. 00125 -195. 8 0. 805 -252. 5 1. 026 氧 0. 00143 -183 1. 14 -252. 5 1. 426 氟 0. 001696 -181 1. 11 -223 1. 3 氩 0. 00178 -185. 7 1. 402 -233 1. 65 臭氧(O3) 0. 00214 -183 1. 71 氨 0. 00077 -34. 1 1. 557 -102 约1. 9 名称 0℃,标准大气压,密度 名称 0℃,标准大气压,密度 名称 0℃,标准大气压,密度 煤气 0. 00060 一氧化碳 0. 00125 氯 0. 00321 溴 0. 00714 空气 0. 00129 氯化氢 0. 00164 甲烷 0. 00078 氧化氮 0. 00134 硫化氢 0. 00154 乙炔 0. 00117 乙烷 0. 00136 二氧化碳 0. 00198 常见气体的粘度、密度值

常见气体的粘度、密度值总结如下表(常温:25℃,常压) 物质 英文名 密度 动力粘度 运动粘度 kg/m μPa·s mm/s 空气 air 1.169 18.448 15.787 氨气 ammonia 0.694 10.093 14.539 氩 argon 1.613 22.624 14.03 丁烷 butane 2.416 7.406 3.065 丁烯 1- butene 2.327 8.163 3.507 二氧化碳 carbon dioxide 1.784 14.932 8.369 一氧化碳 carbon monoxide 1.13 17.649 15.614 二甲醚 dimethyl ether 1.895 9.1 4.801 乙烷 ethane 1.222 9.354 7.654 乙烯 ethylene (ethane) 1.138 10.318 9.066 氢 hydrogen 0.081 8.915 109.69 氢化硫 hydrogen sulfide 1.385 12.387 8.942 异丁烷 isobutane 2.407 7.498 3.115 异丁烯 isobutene 2.327 8.085 3.474 氪 krypton 3.387 25.132 7.419 甲烷 methane 0.648 11.067 17.071 氖 neon 0.814 31.113 38.239 新戊烷 neopentane 3.021 7.259 2.403 氮 nitrogen 1.13 17.805 15.753 一氧化二氮 nitrous oxide 1.785 14.841 8.314 氧 oxygen 1.292 20.55 15.91 仲氢 parahydrogen 0.081 8.915 109.69 丙烷 propane 1.808 8.146 4.507 丙烯 propylene 1.722 8.56 4.971 R11  5.744 10.162 1.769 R114  7.109 10.807 1.52 R115  6.347 12.515 1.972 R116  5.626 14.148 2.515 R12  4.971 11.807 2.375 R124  5.651 11.593 2.051 R125  4.915 12.962 2.637 R13  4.252 14.362 3.378 R134a  4.201 11.819 2.813 R14  3.563 17.244 4.839 R142b  4.16 10.421 2.505 R143a  3.448 11.087 3.215 R152a  2.722 10.081 3.704 R218  7.748 12.49 1.612 R22  3.539 12.631 3.569 R227ea  7.05 11.591 1.644 R23  2.846 14.913 5.24 R236ea  6.354 10.897 1.715 R236fa  6.332 10.96 1.731 R245ca  5.661 10.117 1.787 R245fa  5.639 10.303 1.827 R32  2.125 12.613 5.937 R41  1.384 10.955 7.913 RC318  8.315 11.505 1.384 反丁烯二酸 trans-2-butene 2.334 8.028 3.44 二氯碘甲烷 trifluoroiodomethane 8.082 14.277 1.767 氙 xenon 5.324 22.984 4.317 一、世界上最轻的气体 <氢>

1766年,英国的一个百万富翁叫亨利·卡文迪许(Henry Gavendish)发现一种无色气体——氢气。这种气体比空气轻14倍,即1立方厘米仅重0.00008989克

二、世界上最重的气体<六氟化钨》

事实上,与许多人的信念相反,世界上最重的气体并不是氡。六氟化钨在不同的温度下为一种无色、无嗅的气体或透明的液体,沸点17.5度,是一种极强的氟化剂。式量大于氡,为298.

三、在水中溶解度最大的气体<氨>

许多气体都能够溶解在水中。但各种气体在水里的溶解度是不同的。通常情况下,1体积的水

能够溶解1体积的二氧化碳。而1体积的水只能溶解1/10体积的氢。氢这种气体的溶解度可见

很小。相比之下,有些气体的溶解度比二氧化碳还要强得多。在1个大气压和20℃时,1体积

水能溶解2.4体积的硫化氢气体或2.5体积的氯气。氨是溶解度最大的气体。它是一种有刺激性

气味的气体,在1个大气压和20℃时,1体积水约能溶解700体积氨气。氨气的水溶液称为氨水。

氨水是一种重要的肥料。而氨是现代化工业上最重要的产品之一,可用来制造硝酸、炸药等,

也可用来制造药品。氨还有其他一些性质:它容易气化,气压降低,它就可急剧蒸发,同时它

又易液化,在-33℃的情况下,它就会凝结成为无色液体,同时还会释放出大量的热。

1、DM%:表示饲料中干物质的百分比含量。DM是Dry matter(干物质)的缩写。

2、CP%:表示饲料中粗蛋白的百分比含量。CP是crude protein(粗蛋白)的缩写。

3、CEE%:表示饲料中粗脂肪的百分比含量。

4、CF%:表示饲料中粗纤维的百分比含量。CF是Crude fiber(粗纤维)的缩写。

5、NDF%:表示饲料中中洗涤纤维的百分比含量。NDF是Neutral detergent fiber(中洗涤纤维)的缩写。

6、ADF%:表示饲料中酸洗纤维的百分比含量。ADF是Acid detergent fiber(酸性洗涤纤维)的缩写。

7、CA%:表示饲料中钙的百分比含量。Ca是钙元素的化学符号。

扩展资料:

按满足动物营养需要层面分类,饲料产品可分为:

1、全价配合饲料。含有满足动物对蛋白、能量、常量矿物质、微量矿物质、维生素及各类营养性及非营养性添加剂需求的饲料。可直接饲喂动物。

2、浓缩饲料。通常饲料配方中能量饲料如玉米、小麦、麸皮等占配方比例在50%以上,而这些原料多是养殖业者自产或方使采购的原料,为降低运输成本,饲料生产者设计出不含能量原料的饲料产品,养殖业者购回此类产品后与自产或自购的能量原料进行混合后即可生产出相对成本较低的全价配合饲料。

3、预混合饲料。为进一步满足规模饲养者精细化饲养和降低成本的需求,饲料生产者设计出预混合饲料产品,这类产品主要包含矿物质、维生素、各类营养性及非营养性添加剂。这类产品的特点是添加比例低(农业部令2012年第3号定义不高于10%)、营养浓度高、混合难度大、产品价值高、技术含量高、贮存要求高。

参考资料来源:百度百科-饲料


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8472687.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-16
下一篇 2023-04-16

发表评论

登录后才能评论

评论列表(0条)

保存