扩散理论和热电子发射理论的区别

扩散理论和热电子发射理论的区别,第1张

以N型半导体为例(1)热电子发射理论:当n型阻挡层很薄,以至于电子平均自由程远大于势垒宽度时,电子在势垒区的碰撞可以忽略,因此,这时起决定作用的是势垒高度。半导体内部的电子只要有足够的能量越过势垒的顶点,就可以自由地通过阻挡层进入金属。同样,金属中能超越势垒顶的电子也都能到达半导体内。理论计算可以得出,这时的总电流密度Jst与外加电压无关,是一个更强烈地依赖于温度的函数。 (2)扩散理论:对于n型阻挡层,当势垒宽度比电子平均自由程大得多时,电子通过势垒区将发生多次碰撞,这样的阻挡层称为厚阻挡层。扩散理论正是适用于这样的厚阻挡层。此时,总电流密度JsD与外加电压有关。

电场发射的定义:

强电场发射指给金属周围加上强电场,使金属周围的的势能降低,不改变逸出功,也不改变电子能量,再利用隧穿效应,使电子离开金属。开关电器分闸的瞬间,由于动、静触头的距离很小,触头间的电场强度就非常大,使触头内部的电子在强电场作用下被拉出来,就形成强电场发射。

热电子发射的定义:

热电子发射又称爱迪生效应· 爱迪生1883年发现的。加热金属使其中的大量电子克服表面势垒而逸出的现象,与气体分子相似,金属内自由电子作无规则的热运动,其速率有一定的分布。在金属表面存在着阻碍电子逃脱出去的作用力,电子逸出需克服阻力作功,称为逸出功。在室温下,只有极少量电子的动能超过逸出功,从金属表面逸出的电子微乎其微.一般当金属温度上升到1000K以上时,动能超过逸出功的电子数目急剧增多,大量电子由金属中逸出,这就是热电子发射。

在电弧的形成过程中起的作用:

电弧形成初期处于辉光放电时属于强电场发射,电弧发展后期处于弧光放电时属于热电子发射。

热电子发射用途:

许多电真空器件的阴极是靠热电子发射工作的。由于热电子发射取决于材料的逸出功及其温度,应选用熔点高而逸出功低的材料来做阴极。除热电子发射外,靠电子流或离子流轰击金属表面产生电子发射的,称为二次电子发射,靠外加强电场引起电子发射的称为场效发射,靠光照射金属表面引起电子发射的称为光电发射。各种电子发射都有其特殊的应用。

肖特基二极管肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。随着电子不断从B扩散到A,B表面电子浓度逐渐降低,表面电中性被破坏,于是就形成势垒,其电场方向B→A。但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。典型的肖特基整流管的内部电路结构是以N型半导体为基片,在上面形成用砷作掺杂剂的N-外延层。阳极使用钼或铝等材料制成阻档层。用二氧化硅(SiO2)来消除边缘区域的电场,提高管子的耐压值。N型基片具有很小的通态电阻,其掺杂浓度较H-层要高100%倍。在基片下边形成N+阴极层,其作用是减小阴极的接触电阻。通过调整结构参数,N型基片和阳极金属之间便形成肖特基势垒,如图所示。当在肖特基势垒两端加上正向偏压(阳极金属接电源正极,N型基片接电源负极)时,肖特基势垒层变窄,其内阻变小;反之,若在肖特基势垒两端加上反向偏压时,肖特基势垒层则变宽,其内阻变大。综上所述,肖特基整流管的结构原理与PN结整流管有很大的区别通常将PN结整流管称作结整流管,而把金属-半导管整流管叫作肖特基整流管,采用硅平面工艺制造的铝硅肖特


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8549330.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-17
下一篇 2023-04-17

发表评论

登录后才能评论

评论列表(0条)

保存