光谱选择性吸收涂层的成分

光谱选择性吸收涂层的成分,第1张

根据吸收太阳光的原理和涂层的构造不同 , 可将选择性吸收涂层分为四类。

(1) 半导体涂层

半导体涂层是利用半导体物质的电子结构中适当能隙 Eg , 吸收能量大于 Eg 的太阳辐射光子 , 从而使材料的价电子产生跃迁进入导带 , 而对能量小于 Eg 的光子透过。所以要求半导体物质能隙最好为 0 . 62ev (1ev =1 . 602 × 10 -19 J) , 即 9 . 939 × 10 -20 J 。它吸收可见光而不吸收红外线 , Si 、 Ge 是最常见的半导体材料。过渡金属的氧化物、硫化物都属化合物半导体 , 如黑铬 (Cr x O y ) 、黑镍 (NiS-ZnS) 、氧化铜黑(Cu x O y ) 和氧化铁 ( Fe 3 O 4 ) 等。

(2) 光干涉涂层

光干涉涂层利用了光的干涉原理 , 是由非吸收的介质膜与吸收复合膜、金属底材或底层薄膜组成 , 并严格控制每层膜的折射率和厚度 , 使其对可见光谱区产生破坏性的干涉效应 , 降低对太阳光波长中心部分的反射率 , 在可见光谱区产生一个宽阔的吸收峰 , 如 Al 2 O 3 -Mo x -Al 2 O 3 (AMA) 三层膜 , AlN -Al/ Al 八层

中国涂料在线 www.coatingol.com

膜 , OCL I 多层膜等。

(3) 米氏散射涂层

米氏散射涂层是根据有效的媒质理论 , 利用在母体中细分散的金属粒子 , 对可见光的不同波长级光子产生多次散射和内反射而将其吸收。金属粒子和氧化物的共析涂层 , 如 Co -Al 2 O 3 涂层、 Al -Al 2 O 3 涂层、 Au -Al 2 O 3 涂层和黑镍等属于此类。

(4) 多孔涂层

多孔涂层是通过控制涂层表面的形貌和结构 , 使表面不连续性的尺寸与可见光谱峰值相当 , 从而对可见光起陷阱作用 , 对长波辐射具有很好反射作用 , 即在短波侧以黑洞的形式集光 , 而在长波侧以平面的形式辐射光。如通过化学腐蚀在铜表面形成具有林曼状结构的 Cu -CuO 涂层 , 钨的化学蒸镀涂层及粗糙表面上的黑铬镀层等都利用这一性质。

3 . 2 按制备工艺不同分类

根据制备工艺不同 , 又可将选择性吸收涂层分为四类。

(1) 电镀涂层

常用的电镀涂层主要有黑镍涂层、黑铬涂层、黑钴涂层等 , 均具有良好的光学性能。以黑铬和黑镍的效果最好 , 吸收发射比 ( α / ε ) 接近 6 ~ 13 。但电镀黑铬生产成本高 , 同时镀液中的 Cr 6 + 对环境有污染。电镀黑镍耗能少、成本低 , 镀液中不存在有毒物质。但黑镍涂层薄、热稳定性、耐蚀性较差 , 通常只适用于低温太阳能热利用。 Saher Shawk 等研究的黑镍镀层吸收率能达到 0 . 93 , 耐久性、热稳定性、抗腐蚀能力较强 [ 2 ] 。费敬银 [ 3 ] 等研制的黑色镍 — 锡合金镀层 , 由于其中不含硫 , 所以能克服黑镍镀层所具有的缺点 , 其镀液的配制比较复杂。

(2) 电化学转化涂层

常用的电化学涂层有铝阳极氧化涂层 , CuO 转化涂层和钢的阳极氧化涂层等。其中铝阳极氧化涂层光谱选择性、耐腐蚀、耐光照性能良好 , 在太阳能热水器上得到了广泛应用。 CuO 转化镀涂层有一层黑色绒面 , 保护不好容易导致性能下降 , 钢的阳极氧化涂层抗紫外线和抗潮湿性能好 , 这类涂层一般吸收率为 0 . 88 ~0 . 95 , 发射率为 0 . 15 ~ 0 . 32 。 Jahan , F 等研究的 Mo 黑化学转化涂层 , 吸收率最大能达到 0 . 87 , 发射率为 0 . 13 ~ 0 . 17 [ 4 ] 。

(3) 真空镀膜涂层

利用真空蒸发和磁控溅射技术制取 , 如利用直接蒸发制取的 PbS/ Al/ Al 涂层。利用磁控溅射制取的有不锈钢— 碳 / 铜涂层、 AlCN 涂层、 AlN x O y 涂层和 Ni -Cr 涂层等。应用比较多的是多层渐变铝氮铝 (Al -N/Al) 涂层 , 该涂层具有良好的光谱选择性 , 但当温度升高时 , 发射率也随之急剧上升 , 只能在 250 ℃ 以下使

中国涂料在线 www.coatingol.com

用。

还有采用射频溅射制备的金属陶瓷复合涂层 , 主要应用在中高温领域 , 它是近年来新开发的工艺 , 如Ni -Al 2 O 3 涂层。 Wu -AlN x 选择性涂层 , 是将钨、铬等金属粒子掺入氮化铝介质 , 得到金属陶瓷复合涂层。基片采用铜、铝等反射率高的金属 , 集热温度可达 350 ℃ 以上。

Farooq , M. O 等采用 Ni ∶ SiO 2 金属陶瓷作吸收层 , Ni 在涂层表面的体积比为 10 % , 到底部逐渐变化为90 % , 涂层厚度为 (100 ~ 170) nm , 吸收率为 0 . 96 , 发射率为 0 . 03 ~ 0 . 14 [ 5 ] 。 Zhang Qi -chu 等采用掺钼的三氧化二铝 (Mo -Al 2 O 3 ) 金属陶瓷作为选择性吸收涂层材料 , Al 2 O 3 作减反射 层 , 双层Mo -Al 2 O 3 金属陶瓷层作吸收层 , Mo 或 Cu 作减反射层 , 该涂层在 350 ℃ 下性能稳定 , 吸 收率为0 . 96 , 发射率为 0 . 11 [ 6 ] 。

(4) 涂料涂层

是一种发展比较早的涂层 , 制备方法一般采用 压缩空气喷涂法。如 Fe 2 O 3 -Cr 2 O 3 涂层 [ 7 ] , 以Fe 2 O 3 、 Cr 2 O 3 和 MnO 2 为颜料 , 有机硅改性丙烯 酸树脂为粘结剂 , 涂层的吸收发射比可达 3 . 26 PbS 涂层 , 以 0 . 1 μ m 林蔓状晶体 PbS 为颜料 , 乙 丙橡胶或氟树脂为粘结剂 , 吸收率为 0 . 85 ~ 0 . 91 , 发射率为 0 . 23 ~ 0 . 40 , 制备简单 , 但林蔓状结构 易氧化失去转换性 , 防锈性能差 [ 8 ] 硅溶胶吸热 涂层 [ 9 ] , 以硅溶胶作粘结剂 , Fe 粉作发色体 , 涂 层成本低、耐候性和防水性好 , 吸收率为 0 . 94 , 发射率为 0 . 41 , 但因为含有机物 , 使用寿命短。

还有酞菁绿涂层 , 颜料成分为 Fe 3 CuO 5 , 装饰性 好 , 适合在太阳房和平板式热水器上应用。吴桂 初[ 10 ] 采用粉末火焰喷涂法制备的黑铬太阳能选择 性吸收涂层 , 工艺简单、成本低、性能稳定、光谱 选择性好 , 其吸收率为 0 . 91 , 发射率为 0 . 15 。

2。

半导体常用的钝化层:

第一类钝化膜是与制造器件的单晶硅材料直接接触的。其作用在于控制和稳定半导体表面的电学性质,控制固定正电荷和降低表面复合速度,使器件稳定工作。

第二类钝化膜通常是制作氧化层、金属互连布线上面的,它应是能保护和稳定半导体器件芯片的介质薄膜,需具有隔离并为金属互连和端点金属化提供机械保护作用,它既是杂质离子的壁垒,又使器件表面具有良好的力学性能。

钝化层是钝化的那部分。钝化是使金属表面转化为不易被氧化的状态,而延缓金属的腐蚀速度的方法。

导电涂层是加涂在绝缘材料表面具有一定导电能力的薄膜或涂层。导电涂层主要有两类:一类是掺合型,另一类是透明薄膜型。掺合型导电涂层是将细颗粒的导电材料掺人到涂层的填料中,与有机或无机黏结剂、稀释剂一道涂刷或喷涂到绝缘材料表面,形成具有某种导电能力的导电层。它可以用喷涂、印刷、刷涂等工艺加涂在刚性或柔性底材上。根据使用要求,调节填料中导电粉末的含量,或用不同电阻率的导电材料则可调节导电涂层的电阻率。这类涂层主要用作电极、电加热膜.也可用来消除静电干扰。另一类更为重要的是透明薄膜型导电涂层。它是利用半导体化合物,如氧化锡、氧化铟、氧化镉、锡酸镉等或者在这些化合物中掺少量氟、锑而制备的透明导电膜。

涂碳铝箔:利用功能涂层对电池导电基材进行表面处理是一项突破性的技术创新,覆碳铝箔/铜箔就是将分散好的纳米导电石墨和碳包覆粒,均匀、细腻地涂覆在铝箔/铜箔上。它能提供极佳的静态导电性能,收集活性物质的微电流,从而可以大幅度降低正/负极材料和集流之间的接触电阻,并能提高两者之间的附着能力,可减少粘结剂的使用量,进而使电池的整体性能产生显著的提升。涂覆方法:形成表面导电层的方法有:在塑料表面涂敷金属填充涂料,真空金属化,热喷涂和粘贴压敏金属箔等。应该根据产品在工作寿命期间对涂层导电性能的稳定性和附着力的要求,选择经济适用的某一种涂敷方法。涂敷金属填充涂料用填充有金属粒子的涂料在塑料外壳形成一层屏蔽层的方法,是一种最简便、最经济的涂敷方法。真空金属化是利用真空技术将金属膜(通常是铝膜)沉积到塑料表面的一种方法。热喷涂将熔化后的金属(如锌熔液)直接喷射到塑料衬底上,可以形成一层厚度约25~50微米纯金属沉积层。压敏金属箔背面涂有粘合剂的金属箔(金属薄片)经常用来连结由于结构缝隙所形成的导电表面断裂,以保持屏蔽的完整性。用途:编辑导电涂层的主要用途是通过金属化涂敷的方法在非导电材料(如塑料)表面上构成一层完整的导电层,以达到对电磁波的吸收和屏蔽目的。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/8657929.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-19
下一篇 2023-04-19

发表评论

登录后才能评论

评论列表(0条)

保存