事实上,碳基半导体晶体管最先是由美国与荷兰科学家在1998年制造出来的,截止到2006年之前,我国在碳纳米管晶体管上并没有明显的建树。可以说,我国对碳纳米管晶体管的研究开始于2000年,7年之后才制备出了性能超越硅晶体管的N型碳纳米管晶体管。由此可知,国外的碳纳米管晶体管的研究要比我们早的多,但是到了今天我们与国外的差距远没有硅晶体管那么大,甚至有超越国外的趋势。
总体而言,国外对碳纳米管晶体管的研究,还是比我们要领先的。在2013年,MIT研究团队发表了由178个晶体管组成的只能执行简单指令的碳纳米管计算机。在2019年,MIT团队已能制造完整的由14000个碳纳米管晶体管组成的处理器了。而国内于2017年制造了基于2500个碳纳米管晶体管的处理器,整体性能相当于因特尔4004的水平。至于在2019年国内是否研发出了集成更多碳纳米管晶体管的处理器,目前尚未有报道。
由于碳纳米管较容易聚合在一起,所以MIT团队利用了一种剥落工艺防止碳纳米管聚合在一起,以防晶体管无法正常工作。要知道MIT团队制造的CPU主频只有1Mhz,早期的80386处理器的频率还有16Mhz,也不是说2019年碳纳米管制造的计算机性能,仅相当于1985年制造的硅晶体管处理器的性能,这差距就太大了。离实用化,还有较长的一段路要走。因为碳纳米管晶体管之间的沟道和碳纳米管晶体管的体积过大,导致碳纳米管晶体管可以容纳的电流较小,容纳得电荷较少。MIT制造的由14000个碳纳米管晶体管组成的处理器中的沟道宽度为1.5微米,与现在纳米级相距较远。也只有缩小碳纳米管晶体管的体积和减小沟道的距离,才可以提升整体性能。
但是国内于2017年,就研制出了栅长为5纳米的碳纳米管晶体管,近日又研发出了栅长3纳米的碳纳米管晶体管。可以说,国内在碳纳米管晶体管的小型化上走的比较远。在2007年左右,国内以碳纳米管晶体管制造的处理器主频就高达5Ghz,要比国外2019年制造等我处理器主频高的多。从国外的相关产品来看,其碳纳米管栅长究竟达到了何种地步,也说不准。只不过,由此可知,在碳纳米管的研发上,国内技术最起码不会差国外技术太多,很有可能是同步发展的。
【碳基半导体芯片真的能够助力我国芯片突破西方禁锢?从此不依赖ASML吗?】
我们应该看到了近期的新闻,2020年5月26日,北京元芯碳基集成电路研究院宣布,解决了长期困扰碳基半导体材料制备的瓶颈! 该消息一出,瞬间引起了我们的关注,于是我们扎堆的认为, 碳基半导体芯片一定能够助力我国芯片的突破,打破西方禁锢?从此不依赖ASML。
了解现状——西方国家垄断的是硅基材料,而这些硅基材料在我国,我们的优势非常的低;一些关键性的材料还是倍国家技术给垄断的。而此时,我们想要打破束缚,就必须要寻找新的思路,于是出现了我们期待的:碳基半导体能否替代未来的硅基材料呢?
其实,有专家表示,北由于碳分子结构稳定,很难像硅材料一样通过掺杂其他物质改变性能。因此,碳纳米管要实现产业化,尚有很长一段路要走。不过,如今,北京元芯碳基集成电路研究院的突破确实给了我们很大的希望。
碳基半导体具有成本更低、功耗更小、效率更高。如果能够打破硅基半导体材料的束缚,走出一条全新的碳基半导体路,我们的芯片发展可能更有意义。
其实,以碳纤维(织物)或碳化硅等陶瓷纤维(织物)为增强体,实际上,我们熟知的石墨烯,生物碳以及碳纳米管等等都属于碳基材料。因此,想要碳基材料真正的运用与我们的实际,确实还是有一段路走,可是我们也已经进了一步了。
在芯片处理中, 碳基技术芯片 速度提升,功耗降低,未来更能够运用于多种领域,比如国防,气象,以及我们现在急需要解决的手机芯片,计算机芯片问题。这里我们得知道,相比国外技术, 我国对于碳基技术研究时间早,目前的技术是基于二十年前彭练矛院士提出的无掺杂碳基CMOS技术发展而来。
因此,我们不担心倍国外的技术给限制,因为我们的技术具有前瞻性,确实我们的芯片技术目前还是受限制,特别是ASML的光刻机,因为缺乏技术,在工艺制程方面受到制约。
因此,我们猜测的是,碳基材料未来很有可能打破ASML光刻机的束缚,打破欧美国家芯片的束缚,打造属于我们的芯片技术。
谢谢您的问题。碳基芯片在全球范围内还在朝量产迈进。
碳基芯片目前处于实验室阶段。 IBM和英特尔已经碳基在理论进行了多年的 探索 ,英特尔无果而放弃。IBM与英特尔退而求其次,用的是“掺杂”工艺制备碳纳米管晶体管。在国内,彭练矛和张志勇教授团队在半导体碳碳基半导体材料制备方面取得了研究重大进展,已经领先于全球,但也只是朝产业化进一步迈进。
实验室的成果离现实还很远 。全球碳基芯片真正要实现落地、商品化,除了雄厚的资金,必须要有现有的芯片兼容,直接借用现有半导体产业流程工艺,就可以大大加快碳基芯片产业化进程。
碳基技术需要企业参与 。北京碳基集成电路研究院以前在碳基技术上走在了前列,未来10年发展至少需要20亿元研发投入,这需要企业产研对接,需要企业认识其中的价值。阿里巴巴、腾讯都计划投入数千亿元用于新基建,参与到云服务和芯片全线布局,希望这样的 科技 龙头企业参与“碳基”集成电路,有助于缩短国内碳基技术的商用时间,站在全球视角, 科技 企业及早介入非常重要。
欢迎关注,批评指正。
首先,国外的研究并没有啥进展,因为没有企业投钱,高通的芯片利润这么高,谁会把大把的钱投到一个还不知道成不成功的项目上?
处于 探索 期,技术还远不成熟,距成熟产品路还很远。
一种全新的碳基材料——一氧化石墨烯(GMO)由美国威斯康辛大学米尔沃基分校的科学家在日前发现,据电磁流量计获悉,该半导体新材料由碳家族的神奇材料石墨烯合成,有助于碳取代硅,应用于电子设备中。该团队在研究一种混合纳米材料时,无心插柳得到了GMO。起初,他们的研究对象是一种由碳纳米管(将石墨烯卷成圆柱状得到)组成的、表面饰有氧化锡纳米粒子的混合纳米材料,陈俊鸿用这种混合材料制造出了高性能、高效率而廉价的传感器。为了更好地了解这种混合材料的性能,科学家们需要想方设法让石墨烯变身为其“堂兄弟”——能大规模廉价生产的绝缘体氧化石墨烯(GO)。GO由石墨烯不对齐地堆叠而组成。实验中,陈俊鸿和物理学教授马瑞加·加达得兹斯卡在真空中将GO加热以去掉氧。然而,GO层中的碳和氧原子没有被破坏而是变得排列整齐,变成了有序的、自然界并不存在的半导体GMO。该研究团队接下来需要了解什么触发了这种材料的重组以及什么环境会破坏GMO的形成。威斯康辛大学米尔沃基分校表面研究实验室的主任迈克尔·梅韦纳说:“还原反应会去除氧,但实际上,我们获得了更多氧,因此,我们需要了解的事情还有很多。”该研究团队的成员、力学工程教授陈俊鸿(音译)表示:“石墨烯研究领域的主要驱动力之一是使这种材料成为半导体,我们通过对石墨烯进行化学改性得到了新材料GMO。GMO展示出的特性表明,它比石墨烯更容易大规模生产。”因为GMO是单层形式,因此其或许可应用于与表面催化有关的产品中。他们正在探索其在锂离子电池阳极的用途,GMO有可能提升锂离子阳极的效能。研究人员埃里克·马特森说:“我们认为氧会离开,留下多层石墨烯,但结果却并非如此,让我们很吃惊。”据电磁流量计了解,石墨烯的导电、导热性能极强,远超硅和其他传统的半导体材料,而由硅制成的晶体管的大小正接近极限,科学家们认为,纳米尺度的碳材料可能是“救命稻草”,石墨烯未来有望取代硅成为电子元件材料。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)