图2 分布布拉格反射镜DRR原理示意图激光的谐振效应(Resonance):激光的发光区就是它的「谐振腔(Cavity)」,谐振腔其实可以使用一对镜子组成,如图3所示,使光束在左右两片镜子之间来回反射,不停地通过发光区吸收光能,最后产生谐振效应,使光的能量放大,一般激光二极管的两片镜子就是用DBR镀膜来控制谐振腔的谐振效应。激光二极管的电激发光(EL:Electroluminescence):我们以「砷化镓激光二极管(GaAs laser diode)」为例,先在砷化镓激光二极管芯片(大约只有一粒砂子的大小)上下各蒸镀一层金属电极,对着芯片施加电压,当芯片吸收电能产生「能量激发(Pumping)」,则会发出某一种波长(颜色)的光。发射出来的光经由左右两个反射镜来回反射产生「谐振放大(Resonance)」,由于右方的反射镜设计可以穿透一部分的光,所以高能量的激光光束就会由右方穿透射出,如图3所示。
图3 激光二级管发射激光的原理示意图VCSEL工艺到底难吗?除了上面的基本知识,这些与LED技术相似的工艺术语你也必须知道,我在此不再多解释,他们是MOCVD(有机气相外延沉积)与MBE(分子束外延)外延技术,光刻技术决定芯片图形与尺寸,ICP-RIE(电感耦合反应离子刻蚀)技术刻蚀出发光平台(Mesa),氧化工艺让谐振腔定义出最佳的VCSEL光电特性,钝化绝缘工艺让暴露的半导体材料不受空气与水汽影响可靠度,最后研磨与切割变成一颗颗芯片,再进行测试与出货给封装厂,由于结构上跟红黄LED芯片类似,是上下电极垂直结构,所以一般是先测试芯片特性再进行切割与最后分选。图4就是VCSEL的芯片与封装示意图,做LED的人有没有似曾相识的感觉呢?
图4 VCSEL的芯片与封装示意图,目前主流的VCSEL是To-can封装与阵列封装,尤其在高功率传感系统(车用市场)里面需要用到倒装flip chip的阵列封装VCSEL的结构与关键工艺介绍:VCSEL有几个关键工艺,这几个关键工艺决定了器件的特性与可靠性。关键技术一:VCSEL外延图5是VCSEL的结构示意图,以铟镓砷InGaAs井(well)铝镓砷AlGaAs垒(barrier)的多量子阱(MQW)发光层是最合适的,跟LED用In来调变波长一样,3D传感技术使用的940纳米波长VCSEL的铟In组分大约是20%,当铟In组分是零的时候,外延工艺比较简单,所以最成熟的VCSEL激光器是850纳米波长,普遍使用于光通信的末端主动元件。
图5 VCSEL的外延与芯片结构示意图发光层上、下两边分别由四分之一发光波长厚度的高、低折射率交替的外延层形成p-DBR与n-DBR,一般要形成高反射率有两个条件,第一是高低折射率材料对数够多,第二是高低折射率材料的折射率差别越大,出射光方向可以是顶部或衬底,这主要取决于衬底材料对所发出的激光是否透明,例如940纳米激光由于砷化镓衬底不吸收940纳米的光,所以设计成衬底面发光,850纳米设计成正面发光,一般不发射光的一面的反射率在99.9%以上,发射光一面的反射率为99%,目前的AlGaAs铝镓砷结构VCSEL大部分是用高铝(90%)的Al0.9GaAs层与低铝(10%)Al0.1GaAs层交替的DBR,反射面需要30对以上的DBR(一般是30~35对才能到达99.9%反射率),出光面至少要24~25对DBR(99%反射率),由于后续需要氧化工艺来缩小谐振腔体积与出光面积,所以在接近发光层的p-DBR膜层的高铝层需要使用全铝的砷化铝AlAs材料,这样后面的氧化工艺可以比较快完成。
图6 外延与氧化工艺是VCSEL良率与光电特性好坏的关键关键技术二:氧化工艺这个技术是LED完全没有的工艺,也是LED红光发明人奥隆尼亚克(Nick Holonyak Jr.)发明的技术,如图6所示,主要利用氧化工艺缩小谐振腔体积与发光面积,但是过去在做氧化工艺的时候,很难控制氧化的面积,只能先用样品做氧化工艺,算出氧化速率,利用样品的氧化速率推算同一批VCSEL外延片的氧化工艺时间,这样的生产非常不稳定,良率与一致性都很难控制!精确控制氧化速度让每个VCSEL芯片的谐振腔体积可以有良好的一致性,没有过氧化或少氧化的问题,这样在做阵列VCSEL模组的时候才会有精确的光电特性。即时监控氧化面积是最好的方法,如图7所示,法国的AET Technology公司设计了一台可以利用砷化铝(AlAs)氧化成氧化铝(AlOx)之后材料折射率改变的反射光谱变化精确监控氧化面积,这种精密控制氧化速率的设备,可以省去过去工程师用试错修正来调试参数,对大量稳定生产VCSEL芯片提供了最好的工具。
图7 法国AET科技公司推出的VCSEL即时监控的氧化制程设备,让VCSEL量产更稳定关键技术三:保护绝缘工艺跟LED一样,最后只能保留焊线电极上没有绝缘保护层在上面,由于激光二极管的功率密度更大,所以VCSEL更需要这样的保护层,更重要的是为了不让氧化工艺的AlAs层继续向内氧化影响谐振腔体积,造成激光特性突变,保护层的膜层质量非常重要,尤其是侧面覆盖的致密性更为重要,过去都是用等离子加强气相化学沉积机PECVD来镀这层膜,但是为了要保持致密性需要较厚的膜层,但是膜层太厚会造成应力过大影响器件可靠度!于是原子层沉积ALD技术开始取代PECVD成为最好的镀膜工艺,如图8所示,ALD可以沉积跟VCSEL氧化层特性接近的氧化铝(Al2O3)薄膜,而且侧面镀膜均匀,致密性高,最重要的是厚度很薄就可以完全绝缘保护芯片,除了VCSEL工艺以外,LED的倒装芯片flip chip与IC的Fin-FET工艺都需要这样的膜层,跟氧化技术一样,国内还无法提供这样的设备,目前芬兰的Picosun派克森公司与Apply Material美国应用材料公司提供这样的设备与工艺。
图8 芬兰Picosun派克森公司推出的ALD原子层沉积技术的设备,可以让VCSEL的器件更稳定从光通信到消费电子,VCSEL激光器迎来爆发VCSEL曾在光通信应用市场里“发光发热”,被广泛关注,现在又增加了3D传感的应用,以市场来说,如果以华为、OPPO、VIVO、三星等为首的高端机型第二梯队快速响应与普及,每年全世界消费10多亿部智能手机,如果每部手机嵌入2-3颗VCSEL激光器件,就是二三十亿颗的市场规模。如今,全球VCSEL的总收入已接近8亿美元,预计到2020年该值会增长到21亿美元。未来,除了光通信与3D传感,当VCSEL激光器量产供应链形成之后将带动产品价格的全面平民化,包含AR智能眼镜、智能驾驶的激光雷达等一系列颠覆式应用将彻底从概念化小众市场得到快速普及,如图9所示,VCSEL市场将会进一步爆发。
图9 VCSEL的应用与未来市场趋势台湾与大陆VCSEL的发展现状如图10所示,大陆与台湾VCSEL的产业链现状很像十年前的LED,目前内地跟VCSEL有相关的公司可谓凤毛麟角,除了国内光通讯器件厂商光迅科技已有VCSEL商业化产品推出,在消费电子领域,内地尚无一家拥有VCSEL芯片量产能力的企业,当然有潜力的公司也不是没有,大家熟悉的三安光电和华工科技(华工正源)是有潜力的大陆厂家,而拥有四元红黄MOCVD设备的公司例如乾照与华灿也有机会可以跨入这个领域,当然技术是关键,在美国硅谷,有一批华人专注于这个领域,例如Intelligent与Vertilite都是华人核心团队组成的公司,如果可以吸引他们回来,这个行业在内地可能可以发展的比较快。当然台湾在这方面的发展已经非常成熟,也得到国际大厂的认可,上游方面,全新、联亚与光环科技都积淀了十五年的外延与芯片技术,LED大厂晶电也早做了布局,专注芯片制造的稳懋更是砷化镓芯片最专业的代工厂,VCSEL工艺对稳懋来说也非难事,除了拿到苹果3D摄像头供应链Lumentum的代工订单,近期也得到3D传感模组大厂Heptagon(AMS)的VCSEL芯片代工订单,另外一家砷化镓六寸晶圆厂宏捷科也是Princeton Optronics的代工厂家。中游的封装方面,台湾累积了长久的精密封装实力,目前联钧、华信、华星、光环、矽品与同欣都是有实力可以达到世界大厂要求的封装技术,最后介绍一家坚持15年的专注VCSEL技术与产品的公司华立捷,这家公司具有上中下游垂直整合的实力,也是目前在VCSEL模组可以跟国际大厂竞争的公司。所以整体来看,台湾的VCSEL显现出一定的实力,现在因为苹果新机也得到丰硕的果实,大陆这方面就几乎空白了,大陆有机会翻转吗?
图10 VCSEL的产业链分工示意图中国大陆砷化镓材料与VCSEL的机会三五族材料像砷化镓或氮化镓目前已经普遍使用在我们的日常生活中,以一支手机为例,最新的智能手机3D传感使用砷化镓VCSEL,背光与闪光灯使用高亮度氮化镓LED,大家不熟悉的PA大部分使用砷化镓功率放大器,PA为目前电子元件中相当重要的零组件,多半被设计放在天线放射器前端,广泛被应用于手机当中,传统2G手机仅使用两颗PA,3G使用四至五颗,4G手机则是来到七颗,至于5G手机的用量将更可观,高频多频带无线通讯后,不管是高中低阶, 4G手机渗透率开始起飞,这也引起了内地光电大厂的注意,去年三安光电计划以2.26亿美元收购环宇通讯半导体的消息,就是三安想要发力砷化镓材料的企图,这家公司主要从事砷化镓/磷化铟/氮化镓高阶射频及光电元件化合物半导体晶圆制造代工,同时也有布局光通讯与红外传感的关键发射元器件,三安的企图心不可谓不小。内地电子业经过这么多年的发展,已经发展成实力雄厚的红色供应链,但是内地的产业特征大多是可以大量制造、量产的产品特性,并非少量多样化产品且需要高技术开发之产品。以砷化镓PA或VCSEL来说,从认证到量产,不同于LED产业,不是会发光就可以依照市场不同等级的运用去分配出海口,砷化镓产业的重要应用产品是1跟0的概念,能用就能用,不能用就不能用,尤其是PA的品质影响甚钜,VCSEL的质量要求也特别高,这些采用砷化镓PA或VCSEL的品牌大厂对品质要求甚严,没人愿意冒风险,对大陆厂商要进入这个领域的难度可谓空前巨大。未来三安如果要进入这个领域,他们面对的竞争对手是目前多数智能手机内建PA或RF(射频)组件的砷化镓晶圆代工厂稳懋科技,稳懋已经与大厂高通合作,设计出新一代TruSignal天线效能强化方案,很难撼动它的地位,另外像台湾宏捷科与全新都有深厚的功底。长路漫漫,对砷化镓或VCSEL产业而言,目前大陆的厂家都属于小学阶段,台湾是高中阶段,美国应该是大学程度了,但是大陆有非常大的市场,尤其是5G来临对宽带基础建设要求会越来越高,PA与RF组件需求越来越大,而当所有手机都把3D传感技术当标准配备的时候,VCSEL的市场会比现在大好几倍,大陆厂家有最新的设备,有雄厚的资本,缺的就是人才与技术经验,也许下一波投资与猎头狂潮将会是VCSEL莫属了!我们可以拭目以待!
近日,深圳奥锐达科技有限公司(下称“奥锐达”)正式发布单光子面阵固态激光雷达技术方案(下称“方案”)。该方案创新性地融合VCSEL与SPAD技术架构,实现了分辨率和探测距离的显著突破,并在功耗、体积等工程化特性上有突出表现。
值得关注的是,奥锐达全固态激光雷达样件Ordarray的实测Demo视频也在奥锐达官网首次亮相。视频中展示了Ordarray实时重建百米级范围内的实时路况点云图过程。
图注:奥锐达全固态激光雷达样件Ordarray
V CSEL + SPAD 技术 ,实现 远距离 单光子 探测
在全固态激光雷达领域,目前主流的技术路线为包括OPA 光学相控阵技术、 Flash 快闪技术等。其中,OPA 光学相控阵技术技术难度高,成本居高不下;Flash快闪技术则因其发射面阵光源的物理特性,能量分散,探测距离则较为受限。
奥锐达的激光雷达采用创新性的VCSEL+SPAD技术方案。其中,多节可寻址VCSEL(Addressable VCSEL)通过可控的多光束扫描技术,对外发射VCSEL 激光器的点阵多光束光源;同时,探测器可以开启与发射相对应的区域,接收目标反射光;最终通过电子扫描,完成整个视场范围内的激光雷达点云获取。
图注:VCSEL+SPAD的可控多光束扫描技术图解
这种可控的多光束扫描光源被称为可寻址VCSEL(Addressable VCSEL)。相较于Flash方案,可寻址 VCSEL激光器的发射光峰值功率密度和信号信噪比均显著提高。这也意味着,在相同的功率下,奥锐达的激光雷达方案可以实现更远的探测距离。此外,这种扫描方式有助于芯片化和小型化,最大限度地减少了外围电路的复杂程度,实现全固态扫描。
在接收端,奥锐达的方案采用了SPAD(Single Photon Avalanche Diode, 即单光子雪崩二极管)阵列传感器,从而使得激光雷达具备单光子探测能力,探测灵敏度大幅提升。
实际探测过程中,奥锐达的激光雷达探测系统,可以在亚毫秒/毫秒级的时间段内,使用可寻址VCSEL光源打出去成百上千个光脉冲。从目标反射回来的激光脉冲信号被对应区域的SPAD像素接收,以一定的概率触发像素发生雪崩事件,完成光子计数。最终,系统通过排序累积形成能够完成接收脉冲信号波形重构的直方图,从而实现对目标的测距。
图注:智能汽车传感器示意图
TCSPC 动态调整, 合理分配系统能力
从技术角度出发,发射+接受脉冲光信号的次数越多,系统对波形的重建也越准确,测距能力也越强。但是,累积次数过多也会导致系统帧频的下降。
为此,奥锐达的激光雷达方案可以通过调整 TCSPC(Time-Correlated Single Photon Counting,时间相关单光子计数器)次数动态,来设置不同探测区域的测距性能。
在实际行车过程中,智能汽车对不同视角、不同环境下的测距需求是不同的。在需要更多深度信息的区域,Ordarray可以打上更多脉冲光信号;在边缘区域,Ordarray可合理降低信号的发射与接收频次,使得系统能力通过动态调整得到合理分配。
目前,奥锐达已经完成全套技术链路的验证。基于业界先进的标准CMOS半导体工艺制作的可量产的VCSEL激光器,SPAD阵列型传感器和芯片,奥锐达的单光子面阵激光雷达技术已经攻克了在较小体积和功耗条件下高帧率的激光发射、接收、信号处理的各项技术难关。
图注:Ordarray在静止与行驶状态下生成的点云图。
值得一提的是,基于单光子面阵雷达的特殊成像模式,Ordarray可同其他激光雷达、高清摄像头等高精度传感器协同工作,大幅降低旋转和混合固态式激光雷达与其它异构传感器数据标定融合的困难,使得智能汽车处理中枢完成多类传感器的数据前融合。在多传感器的加持下, Ordarray可以全面提升智能汽车对行人、障碍物和小型物体的检测能力,从而提升自动驾驶的安全冗余及容错率。
全固态模块化设计, 更 小巧 、更 灵活 、更 易 装车
目前,奥锐达已经成功实现大规模固态面阵激光雷达的集成设计。Ordarray采用全固态结构设计,机身内部没有任何机械旋转运动部件。这直接降低了车载激光雷达产品的体积、故障率,全线提升产品可靠性。
Ordarray还采用模块化创新设计,重构了发射模块、接收模块、信息处理模块等内部空间,以适配不同车型对于激光雷达的探测要求。奥锐达设计了多款接口完全兼容的收发镜头。按照不同的性能需求,只需要更换光学镜头,即可精准获取不同视场角及探测范围内的点云数据,从而大幅降低厂商的适配成本。
图注:奥锐达Ordarray的摄像头可以拆解更换,以适配不同需求。
为了解决固态激光雷达的量产难题,奥锐达结合多年3D视觉类产品大规模量产经验,自主研发机器视觉自动化装调方案,减少繁琐的人工校准等程序,从而轻松实现激光雷达装调,大幅提升激光雷达的可量产性。
针对固态激光雷达,奥锐达将在今年对技术和产品进行两轮迭代;在推进产品研发的同时,奥锐达车规级工厂和产线也提上议程,预计到2022年,符合 IATF 16949 标准的车规级产线将逐步投产。
图注:奥锐达通过自动化装调方案,提升产品可量产性。
深圳奥锐达科技有限公司是奥比中光科技集团股份有限公司的控股子公司。作为国内领先的车载3D视觉传感器方案提供商,奥锐达自2019年4月成立起一直致力于创新的激光雷达和车载3D摄像头底层核心元器件和新型架构的设计,公司产品包括面向移动机器人行业和汽车行业的激光雷达和车规级3D TOF摄像头。 @2019
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)