材料属性包括:
导热系数、热膨胀系数、恒压热容、电导率、密度、杨氏模量、泊松比、屈服应力和硬化曲线、动态黏度;
注意:特定材料的材料属性取决于材料的类型。
材料库中的大多数材料还包含了不同的取向或其他变量信息,这些信息可以表述同一种材料在不同工况或者不同变化时的材料属性。
材料库中的所有材料属性均具有参考信息。在“属性”列表中选择一个属性,可以查看材料属性的参考信息。参考信息通常包括一些期刊或论文,有时为电子文献的网址链接,也可能包含材料相关特性值的准确性、参考温度或压力的注释。
除了附加材料库之外,COMSOL 及其附加模块中还提供了以下内置材料库:
1、comsol内置材料库:包含 30 多种常用材料,例如空气,铝,砖,混凝土,铜,硅玻璃,硅,结构钢和水;一些材料特性取决于压力和温度;该库中的材料属性值为某些常见材料的典型示例值。
2、AC/DC 材料库:包含对电磁材料属性,包括铜,软铁,石英,石墨,吉尔斯–阿瑟顿磁滞材料,非线性永磁体和硬磁材料;材料特性包括电磁特性上,例如电导率,相对介电常数,相对磁导率以及磁通密度和磁场范数。
3、电池与燃料电池材料库:包含许多电极和电解质,主要用于锂离子,镍氢和铅酸电池的建模;材料特性包含电导率和电解质电导率,盐和参考浓度,扩散系数,平衡电势和密度。
4、生物热材料库:包含许多与人体有关的材料属性,例如骨骼,脂肪,肝脏,肌肉,心肌,前列腺和皮肤;热材料特性包含热导率,恒定压力下的热容量和密度,适用于生物加热建模。
5、建筑材料库:包含建筑材料(如混凝土,木材,铜版纸和不同类型的木板)的热和湿气属性;除了常见的热特性外,这些材料还具有水蒸气渗透性、耐蒸汽性以及水含量等;该库中的材料可用于热,空气和湿气(HAM)建模。
6、平衡放电材料库:包含与空气,氩气,氦气,氢气,氮气和氧气有关的随温度变化的电学和热学性质;适用于等离子体仿真中的平衡放电建模。
7、液体和气体材料库:包含与温度相关的热和流体材料属性
8、MEMS材料库:材料属性包含多种金属,半导体,绝缘体和聚合物的机械,热和电材料;
9、非线性磁性材料库:材料属性为非线性磁化曲线,适用于用于各种铁磁合金(如各种类型的钢)仿真。
10、非线性结构和地质力学材料模型:使用材料模型表示非线性结构材料,而不是使用材料库中的材料特性来表示。
11、光学材料库:包含折射率的随频率变化的实部和虚部,用于光学仿真,该仿真由实验、模型和仿真共同验证
12、压电材料库:包含各种压电材料:氮化铝,钛酸钡,锗酸铋,硫化镓,钛酸锆钛酸铅和石英的变体,罗谢尔盐,二氧化碲等
13、压阻材料库:包含在对压阻模型化时使用的材料特性,例如d性矩阵,压阻和d性耦合矩阵,损耗因子,相对介电常数,电导率和 p- 硅和 n- 硅的轻掺杂单晶和多晶密度材料
14、射频材料库:包含多种基材材料,可用于射频组件建模
15、半导体材料库:包含半导体材料,例如硅,锗,砷化镓,砷化铟,金刚石等
16、热电材料库:包含热和电材料属性,包括用于模拟热电效应
强调氧化镓的公司的概念股票就是氧化镓概念股。第三代半导体的火爆,就是因为新的材料体系可以在高压、大功率情况下采用单极器件,即使用SiC MOSFET、GaN HEMT、Ga2O3 FET,取代硅基的IGBT,除了产品可靠性、电流能力、成本下降空间尚需要一定时间验证外,几乎全面实现了前面所提到功率器件发展的所有诉求。氧化镓在光电子器件方面有广阔的应用前景,被用作于Ga基半导体材料的绝缘层,以及紫外线滤光片。这些是氧化镓的传统应用领域,而其在未来的功率、特别是大功率应用场景才是更值得期待的。拓展资料:
氧化镓的用途:
1、 氧化镓并不是很新的技术,多年前就有公司和研究机构对其在功率半导体领域的应用进行钻研,但就实际应用场景来看,过去不如SiC和GaN的应用面广,所以相关研发工作的风头都被后二者抢去了。而随着应用需求的发展愈加明朗,未来对高功率器件的性能要求越来越高,这使得人们更深切地看到了氧化镓的优势和前景,相应的研发工作又多了起来,已成为美国、日本、德国等国家的研究热点和竞争重点。而我国在这方面还是比较欠缺的。
2、 虽然氧化镓的导热性能较差,但其禁带宽度(4.9eV)超过碳化硅(约3.4eV),氮化镓(约3.3eV)和硅(1.1eV)的。由于禁带宽度可衡量使电子进入导通状态所需的能量。采用宽禁带材料制成的系统可以比由禁带较窄材料组成的系统更薄、更轻,并且能应对更高的功率,有望以低成本制造出高耐压且低损失的功率元件。此外,宽禁带允许在更高的温度下 *** 作,从而减少对庞大的冷却系统的需求。
3、 氧化镓是一种宽禁带半导体,禁带宽度Eg=4.9eV,其导电性能和发光特性良好,因此,其在光电子器件方面有广阔的应用前景,被用作于Ga基半导体材料的绝缘层,以及紫外线滤光片。这些是氧化镓的传统应用领域,而其在未来的功率、特别是大功率应用场景才是更值得期待的。
4、 氧化镓是一种新兴的功率半导体材料,其禁带宽度大于硅,氮化镓和碳化硅,在高功率应用领域的应用优势愈加明显。但氧化镓不会取代SiC和GaN,后两者是硅之后的下一代主要半导体材料。氧化镓更有可能在扩展超宽禁带系统可用的功率和电压范围方面发挥作用。而最有希望的应用可能是电力调节和配电系统中的高压整流器,如电动汽车和光伏太阳能系统。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)