不同点:
一、本质不同。
有机半导体是有机合成的,无机半导体是无机合成的。
二、成膜技术不同。
有机半导体的成膜技术比无机半导体更多、更新。
三、性能不同。
有机半导体比无机半导体呈现出更好的柔韧性,而且质量更轻。有机场效应器件也比无机的制作工艺也更为简单。
相同点:运用范围相同,都是主要运用在收音机、电视机和测温上。
扩展资料
无机合成物半导体。无机合成物主要是通过单一元素构成半导体材料,当然也有多种元素构成的半导体材料,主要的半导体性质有I族与V、VI、VII族;II族与IV、V、VI、VII族;III族与V、VI族;IV族与IV、VI族;V族与VI族;VI族与VI族的结合化合物。
但受到元素的特性和制作方式的影响,不是所有的化合物都能够符合半导体材料的要求。这一半导体主要运用到高速器件中,InP制造的晶体管的速度比其他材料都高,主要运用到光电集成电路、抗核辐射器件中。 对于导电率高的材料,主要用于LED等方面。
有机合成物半导体。有机化合物是指含分子中含有碳键的化合物,把有机化合物和碳键垂直,叠加的方式能够形成导带,通过化学的添加,能够让其进入到能带,这样可以发生电导率,从而形成有机化合物半导体。
这一半导体和以往的半导体相比,具有成本低、溶解性好、材料轻加工容易的特点。可以通过控制分子的方式来控制导电性能,应用的范围比较广,主要用于有机薄膜、有机照明等方面。
参考资料:百度百科-半导体
有种材料是一种有机半导体,具有应用前景,一旦薄膜从晶体过渡到液晶状态,它们就会失去一些导电性。研究小组还发现了一种“第三相”,它不发生在块状材料中,与半导体的单分子层相对应。这种结构有利于电荷在薄膜间的传输,对微电子设计具有潜在的意义,其研究结果发表在《纳米研究快报》上。寡噻吩是很有前途的有机半导体,棒状分子可以在沉积的表面定向形成含有硫原子的碳氢化合物的循环,就像成堆的硬币一样。相邻栈中的“硬币边”形成人字形,这种分子排列使电荷从一个分子转移到另一个分子。随着分子中硫代苯数量的增加,其导电性也随之增加,而这是以化合物的溶解度为代价。这些所谓噻吩基的最佳数目是4,为了增加溶解度,将己基片段接枝到共轭分子片段的末端。研究人员在真空反应器中溶解并蒸发了二己基四分之一噻吩(DH4T),并将其作为薄膜沉积在硅衬底上,研究继续用掠入射x射线衍射研究样品的晶体结构。
这项技术包括以非常小的角度将胶片暴露在x射线下,以最大限度地增加x射线在胶片中经过多次反射后所走的距离。否则,薄膜发出的信号会太微弱,无法与基片信号区分开来。衍射测量使研究小组能够识别沉积在衬底材料中的分子排列。最初,DH4T是高度结晶的,它的分子形成人字形,几乎垂直于底物。然而,一旦加热到85摄氏度,材料就会发生相变:分子排列发生变化,形成液晶相,薄膜的导电性下降,样品进一步加热到130℃,然后冷却到室温。
这在一定程度上恢复了材料的结晶度,从而恢复了导电性。在加热过程中,x射线衍射剖面出现了第三种结构,表现为与液晶相不对应的弱衍射极大值。之前的研究已经将这种最大值与DH4T等化合物单分子层相关联。有趣的是,这个“第三相”在70摄氏度时也观察到了。研究发现的单层膜结构有利于电荷沿薄膜平面的输运,对柔性电子应用具有重要意义。此外,在与DH4T结构相似的其他化合物薄膜中,也可能出现新发现的相,这种材料用于微电子学。
由于电荷主要在衬底附近的薄层中转移,研究发现表明,有必要考虑这种材料的纳米结构如何影响其导电性。迪米特里·伊万诺夫(Dimitri Ivanov)教授是MIPT功能有机和混合材料实验室的负责人,也是法国国家科学研究中心(CNRS)的研究主任,并对研究结果发表了评论:使用原位方法,如结构分析,同时测量样品的电性能,使我们能够深入了解材料中复杂相变的性质,并评估其在有机电子领域的实际应用潜力。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)