半导体系列(三):芯片设计篇之CPU研究,国产CPU到底行不行

半导体系列(三):芯片设计篇之CPU研究,国产CPU到底行不行,第1张

CPU又称中央处理器,作为计算机系统的运算和控制核心,是半导体产业技术最密集、最具战略价值的产品,是一个国家技术势力的象征。

目前CPU的市场基本被美国的两大公司垄断,分别是大哥Intel和小弟AMD,两家几乎占领了99%的市场份额。

目前Intel和AMD以X86指令集和微软共同建立了庞大的生态系统并且不对外开放,这样一来,中国队想要自己做CPU的空间不多了。

01 CPU定义

CPU在半导体行业中是人们常接触到的一种芯片,最常见的应用就是在电脑中,其中有名的有Intel的 i9-11980HK 和AMD的 R7-5800X

按照CPU种类来分类,可以分为服务器CPU、家用电脑CPU、嵌入式设备CPU和手机CPU,服务器CPU需要更出色的性能、稳定性和安全性,要求服务器365天开机运行,连续工作,一个服务器可以安装多个CPU;而家用电脑CPU性能要求相对较低,容量较小,不要求连续工作,一个电脑只能安装一个CPU;嵌入式设备和手机对CPU的性能要求相对更低。

按照CPU指令集架构来分类,CPU可以分为RISC和CISC。

CISC 即复杂指令系统计算机,物如其名,CISC是比较复杂的,指令系统比较丰富,有特定的指令来完成对应的功能,可以处理特殊任务。

RISC及精简指令集计算机,把精力集中在经常使用的指令上,对不常用的功能,通过组合指令来完成,实现简单高效的特点,一次RISC不能处理特殊任务。通俗来说就是经常用的功能简单化,不经常用的功能复杂化。

这其中CISC代表的指令集有X86,RISC代表的指令集有ARM、MIPS、RISC-V、Alpha、SPARS,除了这两种之外,还有我国自主研发的指令集DEC和LoongArch。

02 六大国产CPU

首先我们来了解一下什么是CPU的生态环境, CPU的生态环境就是一块CPU推出后,系统和软件对它的支持和优化有多少, 比如国产CPU龙芯就没有一个好的生态,不论是采用MIPS还是自主研发的LoongArch都不能支持Windows系统。

自主建立生态环境又难于上青天,而生态如果没有建立,软件商店就不会有软件(比如QQ在Linux中停更),这也是国产CPU发展最大的瓶颈之一。

目前国内有六大CPU设计厂商,他们是华为、飞腾、兆芯、申威、龙芯、海光(均未上市),他们分别以不同的方式参与CPU的设计。

CPU国产替代的故事得从Intel开始。

Intel趁着PC的东风迅速发展,建立了X86架构,标识了一套通用计算机指令集合,并且与微软一起在X86指令集上建立了庞大的生态。

目前的X86指令集不对外授权,只被英特尔和AMD所掌握,而X86又是PC、服务器领域做得最好的,别的指令集的生态环境远远抵不过X86,留给中国队的发展空间实属有限。

中国队CPU分为3个路线。

其一是由 龙芯 和 申威 代表的:自研指令集

龙芯最初采用的是MIPS精简指令集,制作通用CPU,主要产品是自主可控消费类例如服务器、台式机、嵌入式、航天器等领域。

申威最初采用的是Alpha精简指令集,主要应用在超级计算机和军事领域。

龙芯和申威都因为生态的原因,很难发展起来,尤其是龙芯,想要打入服务器和台式机市场必须有很好的生态。

龙芯因为MIPS的分崩离析,开始发展自己的指令集—— LoongArch ,它是完全有龙芯自主研发,可以兼容MIPS生态, 并且开始尝试用二进制翻译兼容ARM、X86处理器,龙芯的目标是在2025年消除指令集之间的壁垒,彻底搞定兼容问题。

申威也因为Alpha被收购,开始发展自主研发的指令集—— SW64 ,它是由Alpha改进而来,申威制作的神威·太湖之光超级计算机便采用SW64指令集,被称为“国之重器”,在国际上都有一定的地位,多项指标全球第一。

第二路线是由 华为 和 飞腾 代表的:ARM指令集授权

华为芯片“四大天王”麒麟、鲲鹏、巴龙、升腾中,除了巴龙以外,均采用ARM指令集授权来开发。这其中最著名的就是“麒麟”了,在手机领域一度领先,直至海外因畏惧华为的崛起,开始了制裁华为事件,就此“麒麟”短暂隐身。

飞腾也是国内目前使用ARM架构制作CPU的厂商之一,其技术不弱于高通,目前公司也被美国列入黑名单,其芯片制造环节同样被卡脖子,可能成为第二个华为。

除了华为和飞腾以外,国内以ARM架构制作芯片的厂商还有很多,例如贵州华芯通、展讯通信等。

第三路线是由 兆芯 和 海光 代表的:合资获取X86授权

兆芯的X86架构授权是源自于VIA公司将部分X86处理器相关技术、资料等IP产权以1.18亿美元价格卖给兆芯。兆芯基于X86的生态和技术,性能方面普遍高于龙芯,但还是不能和英特尔比肩。

海光的X86架构授权是通过和AMD合资公司来拥有AMD授权IP,但并不是完整的技术转让,而是阉割后的残缺版,所以性能上面和AMD锐龙、高通骁龙差一个档次。

03 RISC-V

RISC-V近些年流行的新型指令集,它是一种开源式指令集,对使用者免费开放,也是这种特性使它被众多专家认为是中国处理器产业的一次机会,而且可能是最后一次机会。

目前全球CPU的市场格局是以X86架构垄断PC、服务器行业;ARM架构垄断移动设备行业,这两家几乎涵盖了所有CPU市场需求。

X86架构归“Wintel”(英特尔+微软)所属,是一种封闭指令集,不对外授权, 简单说就是谁也别想用,就我自己能用 ;ARM架构属于可授权指令集+可授权设计, 简单说就是你用需要经过我同意并且收费,你想再它基础上设计还得再经过我同意并且再收费。

正因为如此,RISC-V作为开放式指令集,被中国队大力支持,看作救命稻草。

那RISC-V究竟有没有那么好呢?我们主要得看两方面: 一个是它的生态好不好,生态是决定指令集发展空间的最大因素;另一个就是它到底是不是彻头彻尾的免费,日后会不会再被卡脖子。

第一,RISC-V的生态怎么样。

RISC-V具有性能高、功率低、面积小、易于扩展等技术特点,最重要的是它的开源、免费的独特属性,为其带来众多合作商,影响力逐步扩大。

从2015年组织RISC-V基金会成立是的25个成员,到现在已经有超过300多个单位的加入,其中包括阿里、谷歌、华为、英伟达、高通、中科院、麻省理工等等。

日前,有知情人士表明,英特尔将以20亿美元收购RISC-V领域的重量级公司SiFive,这也表明了英特尔的态度。

虽然英特尔靠X86架构在PC、服务器领域无人能敌,但是移动设备一直是他的心病,ARM在移动设备领域是他无法抗衡的,而RISC-V的出现,给了机会。

但是看好归看好,ARM的垄断地位依旧很难撼动,RISC-V后续可能与X86联手对抗ARM,但更大的可能是打入嵌入式设备市场中,做物联网领域的“一哥”。

总体来说,不论是PC、服务器,还是移动设备,都很难被RISC-V介入,相反一些嵌入式设备比如空调、冰箱、扫地机器人、电动车等等发展环境更好。

第二,RISC-V是否永远免费。

RISC-V源于2010年,加州大学伯克利分校的一个研究团队研发,当时他们因为市场已存在的指令集相当复杂,且成本和门槛太高,所以建立了新的指令集。

“开源架构RISC-V将永久免费,成为人类共有财产。相较于X86和ARM架构的高门槛,开源架构RISC-V将带来芯片设计的革命”——RISC-V架构开发者之一Krste Asanovic博士。

这是RISC-V架构开发者的原话,表明该指令集是完全开源免费的,到目前为止他们也很好的履行了,甚至把基金会总部搬离美国,迁移至瑞士(永久中立国)以防止美国地方政策的限制。

尽管RISC-V从表现来看做得很优秀,但抽丝剥茧,终究还是有隐患在的。

实现RISC-V指令级架构的处理器内核有很多个不同的微架构实现,而微架构实际的模式是分不同类型的,其中有开放的、需授权的以及封闭的。

虽然基于RISC-V开发CPU不需要支付授权费用,但如果直接用RISC-V内核设计,也是需要支付授权费的。通俗来说就是你用我不需要收费,但是想在它的基础上设计得经过我同意,甚至收费(我们目前是全免费,但我有权利在以后收些钱)。

总结来说,目前全球的指令集呈现以X86、ARM、RISC-V三足鼎立的局势,RISC-V作为新时代的弄潮儿得到了各大厂商的认可,有发展的空间,但它不足以撼动其他两个指令集的地位,不过可以预料到的是,等RISC-V成长起来,仍然有可能对我国CPU发展卡脖子,我们需要保持隐患意识,在跟随洋人步伐的同时,发展自身CPU业务。

纵观国内厂商在电脑CPU领域,龙芯以自研为主,开发属于中国的指令集,目前已经可以满足一些党政领域以及机密工作的需求,但打入家用电脑领域仍需要提升CPU的生态和性能;服务器CPU中,申威在超算上小有成绩;华为近期也有消息称完成40nm去美化工作线投产,在明年更将攻破20nm的工作线,麒麟可能会重新归来;一些未上市公司如芯来 科技 、平头哥等也有在尝试RISC-V领域。

种种迹象都在证明,虽然我们起步慢了30年之久,但国产CPU一直在突破,路途艰辛却一路披荆斩,长夜漫漫,但黎明终将到来。

全文由各种资料查证,如有专业领域上的错误,希望可以抛砖引玉,有所探讨。

芯片全产业链图(绿底已经写完)

今天在后台回复『硬核干货』,主编送你一个 财经 知识锦囊。

(特别说明:文章中的数据和资料来自于公司财报、券商研报、行业报告、企业官网、百度百科等公开资料,本报告力求内容、观点客观公正,但不保证其准确性、完整性、及时性等。文章中的信息或观点不构成任何投资建议,投资人须对任何自主决定的投资行为负责,本人不对因使用本文内容所引发的直接或间接损失负任何责任。)

从沙子到CPU制作全过程

现在市场上产品丰富,琳琅满目,当你使用着配置了最新款CPU的电脑在互联网上纵横驰骋,在各种程序应用之间 *** 作自如的时候,有没有兴趣去想一想这个头不大、功能不小的CPU是怎么制作出来的呢。在今天的半导体制造业中,计算机中央处理器无疑是受关注程度最高的领域,而这个领域中众所周知的两大巨头,其所遵循的处理器架构均为x86,而另外一家号称信息产业的蓝色巨人的IBM,也拥有强大的处理器设计与制造能力,它们最先发明了应变硅技术,并在90纳米的处理器制造工艺上走在最前列。在今天的文章中,我们将一步一步的为您讲述中央处理器从一堆沙子到一个功能强大的集成电路芯片的全过程。

制造CPU的基本原料

如果问及CPU的原料是什么,大家都会轻而易举的给出答案—是硅。这是不假,但硅又来自哪里呢?其实就是那些最不起眼的沙子。难以想象吧,价格昂贵,结构复杂,功能强大,充满着神秘感的CPU竟然来自那根本一文不值的沙子。当然这中间必然要经历一个复杂的制造过程才行。不过不是随便抓一把沙子就可以做原料的,一定要精挑细选,从中提取出最最纯净的硅原料才行。试想一下,如果用那最最廉价而又储量充足的原料做成CPU,那么成品的质量会怎样,你还能用上像现在这样高性能的处理器吗?

除去硅之外,制造CPU还需要一种重要的材料就是金属。目前为止,铝已经成为制作处理器内部配件的主要金属材料,而铜则逐渐被淘汰,这是有一些原因的,在目前的CPU工作电压下,铝的电迁移特性要明显好于铜。所谓电迁移问题,就是指当大量电子流过一段导体时,导体物质原子受电子撞击而离开原有位置,留下空位,空位过多则会导致导体连线断开,而离开原位的原子停留在其它位置,会造成其它地方的短路从而影响芯片的逻辑功能,进而导致芯片无法使用。这就是许多Northwood Pentium 4换上SNDS(北木暴毕综合症)的原因,当发烧友们第一次给Northwood Pentium 4超频就急于求成,大幅提高芯片电压时,严重的电迁移问题导致了CPU的瘫痪。这就是intel首次尝试铜互连技术的经历,它显然需要一些改进。不过另一方面讲,应用铜互连技术可以减小芯片面积,同时由于铜导体的电阻更低,其上电流通过的速度也更快。

除了这两样主要的材料之外,在芯片的设计过程中还需要一些种类的化学原料,它们起着不同的作用,这里不再赘述。

CPU制造的准备阶段

在必备原材料的采集工作完毕之后,这些原材料中的一部分需要进行一些预处理工作。而作为最主要的原料,硅的处理工作至关重要。首先,硅原料要进行化学提纯,这一步骤使其达到可供半导体工业使用的原料级别。而为了使这些硅原料能够满足集成电路制造的加工需要,还必须将其整形,这一步是通过溶化硅原料,然后将液态硅注入大型高温石英容器而完成的。

而后,将原料进行高温溶化。中学化学课上我们学到过,许多固体内部原子是晶体结构,硅也是如此。为了达到高性能处理器的要求,整块硅原料必须高度纯净,及单晶硅。然后从高温容器中采用旋转拉伸的方式将硅原料取出,此时一个圆柱体的硅锭就产生了。从目前所使用的工艺来看,硅锭圆形横截面的直径为200毫米。不过现在intel和其它一些公司已经开始使用300毫米直径的硅锭了。在保留硅锭的各种特性不变的情况下增加横截面的面积是具有相当的难度的,不过只要企业肯投入大批资金来研究,还是可以实现的。intel为研制和生产300毫米硅锭而建立的工厂耗费了大约35亿美元,新技术的成功使得intel可以制造复杂程度更高,功能更强大的集成电路芯片。而200毫米硅锭的工厂也耗费了15亿美元。下面就从硅锭的切片开始介绍CPU的制造过程。

单晶硅锭在制成硅锭并确保其是一个绝对的圆柱体之后,下一个步骤就是将这个圆柱体硅锭切片,切片越薄,用料越省,自然可以生产的处理器芯片就更多。切片还要镜面精加工的处理来确保表面绝对光滑,之后检查是否有扭曲或其它问题。这一步的质量检验尤为重要,它直接决定了成品CPU的质量。

新的切片中要掺入一些物质而使之成为真正的半导体材料,而后在其上刻划代表着各种逻辑功能的晶体管电路。掺入的物质原子进入硅原子之间的空隙,彼此之间发生原子力的作用,从而使得硅原料具有半导体的特性。今天的半导体制造多选择CMOS工艺(互补型金属氧化物半导体)。其中互补一词表示半导体中N型MOS管和P型MOS管之间的交互作用。而N和P在电子工艺中分别代表负极和正极。多数情况下,切片被掺入化学物质而形成P型衬底,在其上刻划的逻辑电路要遵循nMOS电路的特性来设计,这种类型的晶体管空间利用率更高也更加节能。同时在多数情况下,必须尽量限制pMOS型晶体管的出现,因为在制造过程的后期,需要将N型材料植入P型衬底当中,而这一过程会导致pMOS管的形成。

在掺入化学物质的工作完成之后,标准的切片就完成了。然后将每一个切片放入高温炉中加热,通过控制加温时间而使得切片表面生成一层二氧化硅膜。通过密切监测温度,空气成分和加温时间,该二氧化硅层的厚度是可以控制的。在intel的90纳米制造工艺中,门氧化物的宽度小到了惊人的 5个原子厚度。这一层门电路也是晶体管门电路的一部分,晶体管门电路的作用是控制其间电子的流动,通过对门电压的控制,电子的流动被严格控制,而不论输入输出端口电压的大小。

准备工作的最后一道工序是在二氧化硅层上覆盖一个感光层。这一层物质用于同一层中的其它控制应用。这层物质在干燥时具有很好的感光效果,而且在光刻蚀过程结束之后,能够通过化学方法将其溶解并除去。

光刻蚀这是目前的CPU制造过程当中工艺非常复杂的一个步骤,为什么这么说呢?光刻蚀过程就是使用一定波长的光在感光层中刻出相应的刻痕,由此改变该处材料的化学特性。这项技术对于所用光的波长要求极为严格,需要使用短波长的紫外线和大曲率的透镜。刻蚀过程还会受到晶圆上的污点的影响。每一步刻蚀都是一个复杂而精细的过程。设计每一步过程的所需要的数据量都可以用10GB的单位来计量,而且制造每块处理器所需要的刻蚀步骤都超过20步(每一步进行一层刻蚀)。而且每一层刻蚀的图纸如果放大许多倍的话,可以和整个纽约市外加郊区范围的地图相比,甚至还要复杂,试想一下,把整个纽约地图缩小到实际面积大小只有 100个平方毫米的芯片上,那么这个芯片的结构有多么复杂,可想而知了吧。

当这些刻蚀工作全部完成之后,晶圆被翻转过来。短波长光线透过石英模板上镂空的刻痕照射到晶圆的感光层上,然后撤掉光线和模板。通过化学方法除去暴露在外边的感光层物质,而二氧化硅马上在陋空位置的下方生成。

掺杂在残留的感光层物质被去除之后,剩下的就是充满的沟壑的二氧化硅层以及暴露出来的在该层下方的硅层。这一步之后,另一个二氧化硅层制作完成。然后,加入另一个带有感光层的多晶硅层。多晶硅是门电路的另一种类型。由于此处使用到了金属原料(因此称作金属氧化物半导体),多晶硅允许在晶体管队列端口电压起作用之前建立门电路。感光层同时还要被短波长光线透过掩模刻蚀。再经过一部刻蚀,所需的全部门电路就已经基本成型了。然后,要对暴露在外的硅层通过化学方式进行离子轰击,此处的目的是生成N沟道或P沟道。这个掺杂过程创建了全部的晶体管及彼此间的电路连接,没个晶体管都有输入端和输出端,两端之间被称作端口。

重复这一过程

从这一步起,你将持续添加层级,加入一个二氧化硅层,然后光刻一次。重复这些步骤,然后就出现了一个多层立体架构,这就是你目前使用的处理器的萌芽状态了。在每层之间采用金属涂膜的技术进行层间的导电连接。今天的P4处理器采用了7层金属连接,而 Athlon64使用了9层,所使用的层数取决于最初的版图设计,并不直接代表着最终产品的性能差异。

接下来的几个星期就需要对晶圆进行一关接一关的测试,包括检测晶圆的电学特性,看是否有逻辑错误,如果有,是在哪一层出现的等等。而后,晶圆上每一个出现问题的芯片单元将被单独测试来确定该芯片有否特殊加工需要。

而后,整片的晶圆被切割成一个个独立的处理器芯片单元。在最初测试中,那些检测不合格的单元将被遗弃。这些被切割下来的芯片单元将被采用某种方式进行封装,这样它就可以顺利的插入某种接口规格的主板了。大多数intel和AMD的处理器都会被覆盖一个散热层。在处理器成品完成之后,还要进行全方位的芯片功能检测。这一部会产生不同等级的产品,一些芯片的运行频率相对较高,于是打上高频率产品的名称和编号,而那些运行频率相对较低的芯片则加以改造,打上其它的低频率型号。这就是不同市场定位的处理器。而还有一些处理器可能在芯片功能上有一些不足之处。比如它在缓存功能上有缺陷(这种缺陷足以导致绝大多数的 CPU瘫痪),那么它们就会被屏蔽掉一些缓存容量,降低了性能,当然也就降低了产品的售价,这就是Celeron和Sempron的由来。在CPU的包装过程完成之后,许多产品还要再进行一次测试来确保先前的制作过程无一疏漏,且产品完全遵照规格所述,没有偏差

CPU 从诞生至今已经走过了20 余年的发展历程,C PU 的制造工艺和制造技术也有了长足的进步和发展。在介绍C PU 的制造过程之前,有必要先单独地介绍一下C PU 处理器的构造。

从外表观察,C PU 其实就是一块矩形固状物体,通过密密麻麻的众多管脚与主板相连。不过, 此时用户看到的不过是C PU 的外壳,用专业术语讲也就是C PU 的封装。

而在CPU 的内部,其核心则是一片大小通常不到1/4 英寸的薄薄的硅晶片(英文名称为D ie,也就是核心的意思,P Ⅲ C o p p e r m i ne 和Duron 等C PU 中部的突起部分就是Die)。可别小瞧了这块面积不大的硅片,在它上面密不透风地布满了数以百万计的晶体管。这些晶体管的作用就好像是我们大脑上的神经元,相互配合协调,以此来完成各种复杂的运算和 *** 作。

硅之所以能够成为生产CPU核心的重要半导体素材,最主要的原因就是其分布的广泛性且价格便宜。此外,硅还可以形成品质极佳的大块晶体,通过切割得到直径8 英寸甚至更大而厚度不足1 毫 米的圆形薄片,也就是我们平常讲的晶片(也叫晶圆)。一块这样的晶片可以切割成许多小片,其中 的每一个小片也就是一块单独C PU 的核心。当然,在执行这样的切割之前,我们也还有许多处理工 作要做。

Intel 公司当年发布的4004 微处理器不过2300 个晶体管,而目前P Ⅲ铜矿处理器所包含的晶体管 已超过了2000 万个,集成度提高了上万倍,而用户却不难发现单个CPU 的核心硅片面积丝毫没有增 大,甚至越变越小,这是设计者不断改进制造工艺的结果。

除了制造材料外,线宽也是CPU 结构中的重要一环。线宽即是指芯片上的最基本功能单元门电路 的宽度,因为实际上门电路之间连线的宽度同门电路的宽度相同,所以线宽可以描述制造工艺。缩 小线宽意味着晶体管可以做得更小、更密集,可以降低芯片功耗,系统更稳定,C PU 得以运行在更 高的频率下,而且可使用更小的晶圆,于是成本也就随之降低。

随着线宽的不断降低,以往芯片内部使用的铝连线的导电性能已逐渐满足不了要求,未来的处理器将采用导电特性更好的铜连线。AMD 公司在其面向高端的Athlon 系列Thunderbird(雷鸟)处理器 的高频率版本中已经开始采用铜连线技术。这样复杂的构造,大家自然也就会更关心“CPU 究竟是 怎么做出来的呢”。客观地讲,最初的C PU 制造工艺比较粗糙,直到晶体管的产生与应用。众所 周知,C PU 中最重要的元件就属晶体管了。晶体管就像一个开关,而这两种最简单的“开和关” 的选择对应于电脑而言,也就是我们常常挂在嘴边的“0 和1 ”。明白了这个道理,就让我们来看 看C PU 是如何制造的。

一、C P U 的制造

1.切割晶圆

所谓的“切割晶圆”也就是用机器从单晶硅棒上切割下一片事先确定规格的硅晶片,并将其划 分成多个细小的区域,每个区域都将成为一个C PU 的内核(D i e)。

2.影印(P h o t o l i t h o g r a p hy)

在经过热处理得到的硅氧化物层上面涂敷一种光阻(Photoresist)物质,紫外线通过印制着CPU 复 杂电路结构图样的模板照射硅基片,被紫外线照射的地方光阻物质溶解。

3.蚀刻(E t c h i n g)

用溶剂将被紫外线照射过的光阻物清除,然后再采用化学处理方式,把没有覆盖光阻物质部分 的硅氧化物层蚀刻掉。然后把所有光阻物质清除,就得到了有沟槽的硅基片。

4.分层

为加工新的一层电路,再次生长硅氧化物,然后沉积一层多晶硅,涂敷光阻物质,重复影印、 蚀刻过程,得到含多晶硅和硅氧化物的沟槽结构。

5.离子注入(I o n I m p l a n t a t i o n)

通过离子轰击,使得暴露的硅基片局部掺杂,从而改变这些区域的导电状态,形成门电路。 接下来的步骤就是不断重复以上的过程。一个完整的C PU 内核包含大约20 层,层间留出窗口, 填充金属以保持各层间电路的连接。完成最后的测试工作后,切割硅片成单个CPU 核心并进行封装, 一个C PU 便制造出来了。

另外,除了上述制造步骤外,生产C PU 的环境也十分重要,超洁净空间是C PU 制造的先决条 件。如果拿微处理器制造工厂中生产芯片的超净化室与医院内的手术室比较的话,相信后者也是 望尘莫及。作为一级的生产芯片超净化室,其每平方英尺只允许有一粒灰尘,而且每间超净化室 里的空气平均每分钟就要彻底更换一次。空气从天花板压入,从地板吸出。净化室内部的气压稍 高于外部气压。这样,如果净化室中出现裂缝,那么内部的洁净空气也会通过裂缝溜走,以此 来防止受污染的空气流入。 同时,在处理器芯片制造工厂里,I n t el 公司的上千名员工都身穿一 种特殊材料制造的“兔装”工作服。这种“兔装”工作服其实也是防尘的手段之一,它是由一 种极其特殊的非棉绒、抗静电纤维制成,可以避免灰尘、脏物或其他污染源损坏生产过程中的计 算机芯片。兔装可以穿着在普通衣服的外面,但必须经过含有54 个单独步骤的严格着装检验程序,而且当着装者每次进入和离开超净化室时都必须重复这个程序。

二、C P U 的封装

自从I n t el 公司1971 年设计制造出4 位微处理器芯片以来,在20 多年里,CPU 从Intel 4004 、

8 0 2 86 、8 0 3 86 、8 0 4 86 发展到P e n t i um 、P Ⅱ、P Ⅲ、P4,从4 位、8 位、16 位、32 位发展到 64 位主频从MHz 发展到今天的GHzCPU 芯片里集成的晶体管数由2000 多个跃升到千万以上半导体制 造技术的规模由S SI 、MSI 、LSI 、V L S I(超大规模集成电路)达到U L SI 。封装的输入/输出(I /O)引 脚从几十根,逐渐增加到几百根,甚至可能达到2 0 00 根。这一切真是一个翻天覆地的变化。对于CPU,读者已经很熟悉了,2 86 、3 86 、486 、P e n t i um 、P Ⅱ、C e l e r on 、K6 、K 6 -2 、A t h l on …… 相信您可以如数家珍似地列出一长串。但谈到C PU 和其他大规模集成电路的封装,知道的人未必很 多。

所谓封装是指安装半导体集成电路芯片用的外壳,它不仅起着安放、固定、密封、保护芯片 和增强导热性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁——芯片上的接点用导线连接 到封装外壳的引脚上,这些引脚又通过印刷电路板上的导线与其他器件建立连接。因此,封装对CPU 和其他LSI(Large Scale Integration)集成电路都起着重要的作用,新一代C PU 的出现常常伴随着 新的封装形式的使用。

芯片的封装技术已经历了好几代的变迁,从D IP 、Q FP 、P GA 、B GA 到C SP 再到M CM,技术指标

一代比一代先进,包括芯片面积与封装面积之比越来越接近于1 ,适用频率越来越高,耐温性能越 来越好,引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便等等。下面将对具体的`封装形式作详细说明。

1 .D IP 封装

20 世纪70 年代流行的是双列直插封装,简称DIP(Dual In-line Package)。D IP 封装结构具有 以下特点:

(1)适合PCB(印刷电路板)的穿孔安装

(2)比TO 型封装易于对PCB 布线

(3) *** 作方便。

D IP 封装结构形式有:多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP(含 玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式)等。

衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1 越 好。以采用40 根I/O 引脚塑料双列直插式封装(P D I P)的CPU 为例,其芯片面积/封装面积=(3 × 3 )/(1 5 .24 ×5 0 )=1 :86,离1 相差很远。不难看出,这种封装尺寸远比芯片大,说明封装效率 很低,占去了很多有效安装面积。I n t el 公司早期的C PU,如8 0 86 、8 0 2 86,都采用P D IP 封装 (塑料双列直插)。

2.载体封装

20 世纪80 年代出现了芯片载体封装,其中有陶瓷无引线芯片载体LCCC(Leadless Ceramic Chip Carrier)、塑料有引线芯片载体PLCC(Plastic Leaded Chip Carrier)、小尺寸封装SOP(Small OutlinePackage)、塑料四边引出扁平封装PQFP(Plastic Quad Flat Package)。

以0 .5 mm 焊区中心距、208 根I/O 引脚QFP 封装的CPU 为例,如果外形尺寸为2 8 mm ×2 8 mm,芯

片尺寸为1 0 mm ×1 0 mm,则芯片面积/封装面积=(10 ×1 0 )/(28 ×28)=1:7.8,由此可见Q FP 封装比DIP 封装的尺寸大大减小。Q FP 的特点是:

(1)用SMT 表面安装技术在PCB 上安装布线

(2)封装外形尺寸小,寄生参数减小,适合高频应用

(3) *** 作方便

(4)可靠性高。

Intel 公司的8 0 3 86 处理器就采用塑料四边引出扁平封装(P Q F P)。

3 .B GA 封装

20 世纪90 年代随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI 、V L SI 、U L SI

相继出现,芯片集成度不断提高,I /O 引脚数急剧增加,功耗也随之增大,对集成电路封装的 要求也更加严格。为满足发展的需要,在原有封装方式的基础上,又增添了新的方式——球栅 阵列封装,简称B G A (B a l l G r i d A r r a y P a c k a g e)。BGA 一出现便成为C PU 、南北桥等V L SI 芯 片的最佳选择。其特点有:

(1 )I /O 引脚数虽然增多,但引脚间距远大于QFP,从而提高了组装成品率

(2)虽然它的功耗增加,但BGA 能用可控塌陷芯片法焊接,简称C4 焊接,从而可以改善它的电热

性能

(3)厚度比QFP 减少1/2 以上,重量减轻3 /4 以上

(4)寄生参数减小,信号传输延迟小,使用频率大大提高

(5)组装可用共面焊接,可靠性高

(6 )B GA 封装仍与Q FP 、P GA 一样,占用基板面积过大。

Intel 公司对集成度很高(单芯片里达3 00 万只以上晶体管)、功耗很大的CPU 芯片,如P e n t i um 、 P e n t i u m P ro 、P e n t i u m Ⅱ采用陶瓷针栅阵列封装(C P G A)和陶瓷球栅阵列封装(CBGA),并在外壳上 安装微型排风扇散热,从而使C PU 能稳定可靠地工作。

4.面向未来的封装技术

B GA 封装比Q FP 先进,更比P GA 好,但它的芯片面积/封装面积的比值仍很低。

T e s s e ra 公司在BGA 基础上做了改进,研制出另一种称为μBGA 的封装技术,按0 .5 mm 焊区中心距,芯片面积/封装面积的比为1 :4,比B GA 前进了一大步。

1994 年9 月,日本三菱电气研究出一种芯片面积/封装面积=1:1.1 的封装结构,其封装外形尺寸只 比裸芯片大一点点。也就是说,单个IC 芯片有多大,封装尺寸就有多大,从而诞生了一种新的封装 形式,命名为芯片尺寸封装,简称CSP(Chip Size Package 或Chip Scale Package)。CSP 封装具有以 下特点:

(1)满足了LSI 芯片引出脚不断增加的需要

(2)解决了IC 裸芯片不能进行交流参数测试和老化筛选的问题

(3)封装面积缩小到BGA 的1 /4 甚至1 /10,延迟时间大大缩小。

曾有人想,当单芯片一时还达不到多种芯片的集成度时,能否将高集成度、高性能、高可靠 的CSP 芯片(用LSI 或IC)和专用集成电路芯片(ASIC)在高密度多层互联基板上用表面安装技术(SMT)组 装成为多种多样电子组件、子系统或系统。由这种想法产生出多芯片组件MCM(Multi Chip Model)。

它将对现代化的计算机、自动化、通讯业等领域产生重大影响。M CM 的特点有:

(1)封装延迟时间缩小,易于实现组件高速化

(2)缩小整机/组件封装尺寸和重量,一般体积减小1 /4,重量减轻1 /3

(3)可靠性大大提高。

随着LSI 设计技术和工艺的进步及深亚微米技术和微细化缩小芯片尺寸等技术的使用,人们产生 了将多个LSI 芯片组装在一个精密多层布线的外壳内形成MCM 产品的想法。进一步又产生另一种想法: 把多种芯片的电路集成在一个大圆片上,从而又导致了封装由单个小芯片级转向硅圆片级(w a f erlevel)封装的变革,由此引出系统级芯片S O C (S y s t e m O n C h i p)和电脑级芯片P C O C (P C O n C h i p)。

相信随着CPU 和其他ULSI 电路的不断进步,集成电路的封装形式也将有相应的发展,而封装形式的进步又将反过来促成芯片技术向前发展。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9088892.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-24
下一篇 2023-04-24

发表评论

登录后才能评论

评论列表(0条)

保存