半导体与金属材料的电阻率与温度的关系有何区别?为什么?

半导体与金属材料的电阻率与温度的关系有何区别?为什么?,第1张

主要区别是金属的电阻率温度升高而增大。而半导体的电阻率在低温、室温和高温情况下,变化情况各不相同。

一、金属电阻率与温度的关系:

金属材料在温度不高,温度变化不大的范围内:几乎所有金属的电阻率随温度作线性变化,即ρ与温度t(℃)的关系是ρt=ρ0(1+at),式中ρ1与ρ0分别是t℃和0℃时的电阻率α是电阻率的温度系数,与材料有关。锰铜的α约为1×10-1/℃(其数值极小),用其制成的电阻器的电阻值在常温范围下随温度变化极小,适合于作标准电阻。已知材料的ρ值随温度而变化的规律后,可制成电阻式温度计来测量温度。

二、半导体电阻率与温度的关系:

决定电阻率温度关系的主要因素是载流子浓度和迁移率随温度的变化关系。

在低温下:由于载流子浓度指数式增大(施主或受主杂质不断电离),而迁移率也是增大的(电离杂质散射作用减弱之故),所以这时电阻率随着温度的升高而下降。

在室温下:由于施主或受主杂质已经完全电离,则载流子浓度不变,但迁移率将随着温度的升高而降低(晶格振动加剧,导致声子散射增强所致),所以电阻率将随着温度的升高而增大。

在高温下:这时本征激发开始起作用,载流子浓度将指数式地很快增大,虽然这时迁移率仍然随着温度的升高而降低(晶格振动散射散射越来越强),但是这种迁移率降低的作用不如载流子浓度增大的强,所以总的效果是电阻率随着温度的升高而下降。

因为在一定温度下,半导体的电子空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子空穴对,载流子密度增加,电阻率减小。

半导体的五大特性∶掺杂性,热敏性,光敏性,负电阻率温度特性,整流特性。在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。在光照和热辐射条件下,其导电性有明显的变化。

扩展资料

掺杂对半导体结构的影响:

1、掺杂之后的半导体能带会有所改变。依照掺杂物的不同,本质半导体的能隙之间会出现不同的能阶。施主原子会在靠近传导带的地方产生一个新的能阶,而受主原子则是在靠近价带的地方产生新的能阶。

2、掺杂物依照其带给被掺杂材料的电荷正负被区分为施主与受主。施主原子带来的价电子大多会与被掺杂的材料原子产生共价键,进而被束缚。

3、掺杂物对于能带结构的另一个重大影响是改变了费米能阶的位置。在热平衡的状态下费米能阶依然会保持定值,这个特性会引出很多其他有用的电特性。

参考资料来源:百度百科-半导体

                      百度百科-半导体电阻率


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9143081.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存