高温高压下氢氧根会变成羟基自由基吗

高温高压下氢氧根会变成羟基自由基吗,第1张

高温高压下氢氧根不会变成羟基自由基羟基自由基制取方法电Fenton法工艺上将Fe2+和H2O2的组合称为Fenton试剂。它能有效地氧化降解废水中的有机污染物,其实质是H2O2在Fe2+的催化下产生具有高反应活性的·OH。目前,Fenton法主要是通过光辐射、催化剂、电化学作用产生·OH。利用光催化或光辐射法产生·OH,存在H2O2及太阳能利用效率低等问题。而电Fenton法是H2O2和Fe2+均通过电化学法持续地产生[7],它比一般化学Fenton试剂具有H2O2利用率高、费用低及反应速度快等优点。因此,通过电Fenton法产生·OH将成为主要途径之一。应用电Fenton法产生·OH处理有机废水多数是以平板铁为阳极,多孔碳电极为阴极,在阴极通以氧气或空气。通电时,在阴阳两极上进行相同电化当量的电化学反应,在相同的时间内分别生成相同物质的量的Fe2+和H2O2,从而使得随后生成Fenton试剂的化学反应得以实现[8]。溶液的pH值对氧阴极还原获得H2O2的反应有很大的影响[9]。研究表明,溶液的pH值不仅对阴极反应电位和槽电压有影响,还将决定着生成H2O2的电流效率,进而影响随后生成·OH的效率及与有机污染物的降解脱色反应。自20世纪80年代中期后,国内外已广泛开展了对电Fenton法机理及其在有机废水中的应用进行了研究。Hsiao等[10]用石墨作阴极对酚和氯苯的氧化进行了研究,结果表明,该法对酚和氯苯的氧化处理比光Fenton法彻底。郑曦[11]等以可溶性铁为阳极,多孔石墨电极为阴极,Na2SO4为支持电解质,于电解现场产生Fenton试剂,在低电流密度(10 mA/cm2)下,可有效地抑制阴、阳两极副反应的发生,所产生的·OH浓度足以有效地降解染料废水,脱色率达100%,CODCr去除率达80%。另外,电Fenton法与其它方法结合处理废水,不少研究者对其可行性进行了研究[12],取得了一定的成效。Brillas等[13]分别用Pt作阳极和充氧的碳-聚四氯乙烯作阴极,对2,4-D(二氯苯氧基乙酸)进行降解处理,浓度低时2,4-D的矿化程度高达90%,若与光Fenton法相结合,2,4-D可完全矿化。Kusvuran等[14]还以RR120有机染料废水作为研究对象,比较分析了电Fenton法与其它方法的处理效果,结果表明,湿空气氧化法、光电Fenton法、UV/TiO2的降解效果较为理想,电Fenton法次之。电解氧化法在外加电场作用下阳极可以直接或间接产生具有强氧化活性的·OH[15]。这种方法的特点基本无二次污染,符合环保的要求。长期以来,由于受到电极材料的限制,该法降解处理有机污染物的电流效率低,能耗大,因而较少直接应用于实际废水处理中,阳极材料的研究自然也成为主要的研究方向。80年代后,国内外许多研究者从研制高催化活性的电极材料入手,对电催化产生·OH的机理和影响降解效率的因素进行研究,取得较大的突破,并开始用于特种难生物降解的有机废水的处理。如宋卫峰[16]等提出用金属氧化物制作的二维稳定阳极(简称DSA)对有机物进行氧化降解,取得了一定的效果。但由于传统的二维平板电极的表面积较小,传质问题仍未能根本解决,电流效率低,能耗高,故未能在实际中得到普遍应用。相比之下,三维电极因其面体比增大,传质效果较好, 已得到不少研究者的青睐,并取得一定成效。何春等[17]利用三维电极电化学反应器新技术能有效地去除有机废水的苯胺。有的研究者采用廉价的不锈钢作为电极材料,研究了二维电极法和三维电极法的处理效果及其机理。熊蓉春等[18] 就用此法对罗丹明B染料废水进行处理,实验结果表明,不锈钢电极材料对有机污染物具有较好的电催化降解作用,尤其是采用三维电极法时,能在较短时间内达到优异的水处理效果。比色法的测定结果发现,不锈钢电极材料在电催化降解过程中产生了氧化能力极强的·OH。崔艳萍等[19]还研究了在复极性三维电解槽中在填充粒子和通入空气条件下的电化学氧化过程,利用阳极的直接氧化作用、阳极·OH和阴极产生H2O2的间接氧化作用,从而在较低能耗的情况下,充分提高填充粒子的利用率,达到了较好的降解效果。Duverneuil等[20]用沉积了SnO2的Ti作为阳极,对有机废水进行降解研究,获得了满意的去除效果。然而,电解氧化法工业化应用仍存在着一些问题,如电流效率仍然偏低、能耗大、电催化降解反应器的效率较低、电化学催化降解有机污染物的机理还需要进一步探讨等[21]。加强对上述问题的研究,是该法今后发展的方向。半导体电催化法由于某些半导体材料有良好的光化学特性和活泼的电化学行为,近年来,利用半导体材料制成电极在有机废水中的研究应用已引起众多研究者的重视[22]。半导体催化材料在电场中有“空穴”效应[23],即半导体处于一定强度的电场时,其价带电子会越过禁带进入导带,同时在价带上形成电激空穴,空穴有很强的俘获电子的能力,可以夺取半导体颗粒表面的有机物或溶剂中的电子发生氧化还原反应。在水溶液发生的电催化氧化反应中,水分子在半导体表面失去电子生成强氧化性的·OH,同时半导体催化剂和电极产生的H2O2等活性氧化物质也起协同作用,因此,在电催化反应体系中存在多种产生强氧化因子的途径,能有效地提高了催化降解的效率。在半导体电催化反应中,电压和电流强度都要达到一定的值。一般来说,随着外加电压的升高,体系产生·OH的速率增大,有机物的去除效率提高[24]。但也有研究发现,当外加电压达到一定值时,进一步升高电压会抑制自由基的生成,降低了催化效率[25]。半导体电催化法在有机废水处理中的研究,主要以在掺杂半导体电极和纳米半导体材料电极作为阳极产生·OH处理有机废水。董海等[26]采用掺锑的SnO2粉制成的半导体电极,研究了含酚废水的电催化降解反应,对酚的降解率达90%。半导体光电催化法在紫外光等照射下,并外加电场的作用下TiO2半导体内也会存在“空穴”效应,这种光电组合产生·OH的方法又称光电催化法。TiO2光电组合效应不但可以把导带电子的还原过程同价带空穴的氧化过程从空间位置上分开(与半导体微粒相比较),明显地减少了简单复合,结果大大增加了半导体表面·OH的生成效率且防止了氧化中间产物在阴极上的再还原,而且导带电子能被引到阴极还原水中的H+,因此不需要向系统内鼓入作为电子俘获剂的O2[27]。由于上述优势,光电催化技术在有机废水的研究工作得到了迅速发展,戴清等[28]利用TiO2薄膜电极作为工作电极,建立了电助光催化体系,以含氯苯酚(例如4-氯苯酚和2,4,6-三氯苯酚)废水作为降解对象,进行光电催化研究。 Cheng 等[29]用三维电极光电催化降解处理亚甲基兰废水,研究表明,其脱色率和COD的去除率分别为95%和87%。Waldne等[30]用TiO2半导体光电催化法进行降解4-氯苯酚的研究,取得较好处理效果。目前,光电化学反应的研究工作还大多局限于实验室阶段,应用纳米TiO2半导体电极光电催化法处理大规模工业有机废水的报道还不多,主要是由于TiO2半导体重复利用率不高和光电催化反应器光电催化效率降低。因此,把TiO2经过改性、修饰制备成高效且能重复使用的电极,如在TiO2材料表面上进行贵金属沉积、掺杂金属离子、复合半导体、表面光敏化剂等[31],已成为以TiO2为半导体电极进行光电催化降解有机污染物研究的热点。此外,这项技术的实用化必然涉及到反应器的结构和类型的确定,开发高效重复使用且费用较低的工业化光催化反应器,也将是纳米TiO2工业化应用的关键。

电催化是使电极、电解质界面上的电荷转移加速反应的一种催化作用。电极催化剂的范围仅限于金属和半导体等的电性材料。电催化研究较多的有骨架镍、硼化镍、碳化钨、钠钨青铜、尖晶石型与钨态矿型的半导体氧化物,以及各种金属化物及酞菁一类的催化剂。主要应用于有机污水的电催化处理;含铬废水的电催化降解;烟道气及原料煤的电解脱硫;电催化同时脱除NOx和S02;二氧化碳的电解还原。

常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料,叫做半导体(semiconductor).

什么是光催化?

光触媒[PHOTOCATALYSIS]是光 [Photo=Light] + 触媒(催化剂)[catalyst]的合成词。光触媒是一种在光的照射下,自身不起变化,却可以促进化学反应的物质,光触媒是利用自然界存在的光能转换成为化学反应所需的能量,来产生催化作用,使周围之氧气及水分子激发成极具氧化力的自由负离子。几乎可分解所有对人体和环境有害的有机物质及部分无机物质,不仅能加速反应,亦能运用自然界的定侓,不造成资源浪费与附加污染形成。最具代表性的例子为植物的"光合作用",吸收对动物有毒之二氧化碳,利用光能转化为氧气及水。

半导体光催化氧化的原理

目前,研究最多的半导体材料有TiO2、Zno、CdS、WO3、SnO2等。由于TiO2的化学稳定性高、耐光腐蚀,并且具有较深的价带能级,催化活性好,可以使一些吸热的化学反应在光辐射的TiO2表面得到实现和加速,加之TiO2对人体无毒无害,并且通常成本较低,所以尤以纳米二氧化钛的光催化研究最为活跃。

我们知道当入射光的能量大于半导体本身的带隙能量(Bandgap)时,在光的照射下半导体价带(Valence band)上的电子吸收光能而被激发到导带(Conduction)上,即在导带上产生带有很强负电性的高活性电子,同时在价带上产生带正电的空穴(h+),从而产生具有很强活性的电子--空穴对,形成氧化还原体系。这些电子--空穴对迁移到催化剂表面后,与溶解氧及H2O发生作用,最终产生具有高度化学氧化活性的羟基自由基(.OH),利用这种高度活性的羟基自由基便可参与加速氧化还原反应的进行,可以氧化包括生物氧化法难以降解的各类有机污染物并使之完全无机化,以TiO2为便说明有机物在光催化体系中的反应属于自由基反应。

 TiO2光催化反应机理包括以下几个过程:

(1)光激发过程:

 TiO2的带隙能Eg=3.2eV,可利用波长λ<=387.5nm的光子激发。在溶液中TiO2吸入λ<=387.5nm的光子后,即产生e- --h+(电子空穴)对。

 TiO2 + hv----->e- + h+

(2)吸附过程:

 TiO2在溶液中会发生如下的吸附反应:

 Ol2-+Ti(IV) <----->OlH-+Ti(IV) --- OH-

 Ti(IV)+H2O <----->Ti(IV) --- H2O

(3)复合过程:

 e- + h+ <----->heat

(4)捕集过程:

当TiO2粒子于水接触时,表面被羟基化,即h+可将吸附在TiO2表面的OH-离子和H2O分子氧化为.OH自由基,并仍吸附在TiO2表面。顺磁共振研究证明,在TiO2表面的确存在大量.OH自由基:

Ti(IV) -- OH- +h+ ----->Ti(IV) -- OH.

Ti(IV) -- H2O + h+ ----->Ti(IV) -- OH. + H+

与此同时,Ti(IV)吸收e-还原为Ti(III)若体系中有O2(溶解氧)存在,O2作为电子受体,生成过氧化物离子自由基:

Ti(IV) + e- <----->Ti(III)

Ti(III) + O2 <----->Ti(IV) -- O2-

(5) 其它自由基反应

Ti(IV) —— O2- .近一步还原生成H2O2:

 Ti(IV) -- O2- + 2h+ <----->Ti(IV) --H2O2-

 Ti(IV) -- O2- + h+ <----->Ti(IV) --H2O.

在溶液中,.OH、HO2.和H2O2之间可互相转化:

 H2O2 + .OH <----->H2O + HO2.

 这样光能就可在短时间内以化学能的形式贮藏起来,实现光能与化学能之间的转化。

(6)羟基自由基氧化有机物:

大量事实表明,半导体光催化氧化并不是通过空穴直接进行,而是通过其中的.OH自由基发生作用。

Ti(IV) -- OH- + R1.ads ----->Ti(IV) --R2.ads

.OH + R1.ads ----->R2.ads

Ti(IV) -- OH- + R1 ----->R2

.OH + R1 ----->R2

 .OH基是强氧化剂(E0=+3.07V),可将脂肪族碳链氧化为醇、醛、酸,最后脱羧生成CO2。对于芳香族化合物,OH.首先将苯环羟基化,然后与O2作用生成苯环上的过氧化自由基,进而开环生成脂肪族化合物,并随着氧化程度的加深,碳链逐步断裂,最终产物为CO2。 四、光催化氧化的潜在优势及其应用前景

由于光催化氧化法对于水中的烃、卤代有机物(包括卤代脂肪烃、卤代羧酸、卤代芳香烃)、羧酸、表面活性剂、除草剂、染料、含氮有机物、有机磷杀虫剂等有机物,以及氰离子、金属离子等无机物均有很好的去除效果,一般经过持续反应可达到完全无机化。所以半导体光催化氧化技术作为一种高级氧化技术,与生物法和其它高级化学氧化法相比,具有以下的显著优势: 1.以太阳光为最终要求的辐射能源,把太阳能转化为化学能加以利用。由于太阳光,对于人类来说取之不尽、用之  不竭,因此大大降低了处理成本,是一种节能技术。

2.光激发空穴产生的.OH是强氧化自由基,可以在较短的时间内成功的分解水中包括难降解有机物在内的大多数有 机物,它还具有将水中微量有机物分解的作用,因此是一种具有普遍实用性的高效处理技术。

3.半导体光催化剂具有高稳定性、耐光腐蚀、无毒的特点,并且在处理过程中不产生二次污染,从物质循环的角度 看,有机污染物能被彻底的无机化,因此是一种洁净的处理技术。

4.对环境要求低,对PH值,温度等没有特别要求。

5.处理负荷没有限制,即可以处理高浓度废水,也可以处理微污染水源水。

可见,半导体光催化技术既可以在处理废水时单独使用,也可作为对生物处理法的补充和完善,两种方法结合起来使用。

中国国土面积约为600多万平方公里,太阳能年辐射总量每平方厘米超过60万焦,开发利用前景十分广阔。在注重将太阳能转化为电能和热能应用的同时,也应注重将太阳能转化为化学能加以利用。

同时,根据我国目前净化水市场的发展情况看,半导体光催化易于在宾馆、办公室、家庭用净化器上首先取得成功。

总之,半导体光催化技术为彻底解决水污染提供了新的思路和新的方法,具有良好的应用前景。 五、光催化氧化染料废水的可生化研究进展

最理想的废水处理组合工艺是当今社会面临的一大挑战。一方面许多不同种类废水组成的问世,另一方面又要面对处理当中各种各样的问题。根据水的质量、最终需求和经济方面的要求,只用单一的处理技术是不可能完全达到要求或者是不经济的。例如,固体物质、油类和脂类的物理分离以及生物处理方法已经显示出在大多数情况下的经济性和可行性(市政废水、食品及农业加工废水等等),然而,也有一些情况下一友谊赛方法的处理效率并不理想。由此通常利用化学方法处理废水,其中大多数的原理是氧化--还原反应,而且已经转化为应用技术。台氯化、臭氧化和紫外照射过程,电化学处理以及利用.OH自由基氧化的方法,通过研究发现是一种去除有毒可溶性物质有效的方法。上述处理方法中的大多数已经被证实在该领域是十分有价值的,在去除污染物方面得到很好的结果。但是化学处理方法中也存在很多缺点,如需要大量氧化剂、能量及耗时等问题,与物理和生物方法相比仍显得价格较高。

使用如臭氧或.OH自由基这类的氧化剂进行对有机化合物的氧化,通常会产生新的氧化产物,在大多数情况下新生成的氧化产物比前者更容易被生物降解。

所以,考虑将化学氧化过程和生物氧化相结合。一方面,化学氧化过程可以有效的去除污染物的毒性,降低COD和色度等,有利于生物氧化过程的进行;另一方面,在投资和运行费用上,生物过程比化学过程便宜的多。生物过程的投资费用比采用如臭氧或过氧化物的化学过程要少五到十倍。与此同时,运行费用将少三到十倍。而且生物处理技术已经日臻成熟,已广泛的应用于水处理中。将光催化氧化技术与生物技术相结合必将是以后水处理的一个发展方向。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9151374.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存