纳米二氧化钛的光催化反应机理?

纳米二氧化钛的光催化反应机理?,第1张

纳米二氧化钛光生空穴的氧化电位以标准氢电位计为3.0 V,比臭氧的2.07 V 和氯气的1.36 V高许多,具有很强的氧化性.高活性的光生空穴具有很强的氧化能力,可以将吸附在半导体表面的OH-和H2O 进行氧化,生成具有强氧化性的·OH [20].从几种强氧化剂的氧化电位大小顺序:F2>·OH>O3>H2O2>HO2·>MnO4->HCLO>Cl2>Cr2O72->·ClO2,可以看出·OH 具有很高的氧化电位,是一种强氧化基团,能氧化大多数的有机污染物及部分无机污染物.同时,空穴本身也可夺取吸附在半导体表面的有机污染物中的电子,使原本不吸收光的物质被直接氧化分解.在光催化反应体系中,这两种氧化方式可能单独起作用也可能同时作用,对于不同的物质两种氧化方式参与作用的程度视具体情况有所不同.另一方面,电子受体可直接接受光生半导体表面产生的高活性电子而被还原.环境中的某些特定污染物—有毒金属,如Hg2+、Ag1+、Cr6+、Cu2+等也能接受光生半导体表面产生的高活性电子而被还原成无毒的金属分子.纳米二氧化钛光催化反应过程:

·OH+ dye → 染料降解 8-25

TiO2(h+)+ dye →·dye+ →染料氧化 8-26

Mx++xTiO2(e-)→M0 8-27

Mx++y TiO2(e-)→M(x-y) + (x>y) 8-28

从以上纳米二氧化钛光催化反应过程可知,在光催化反应体系中,表面吸附分子氧的存在会直接影响光生电子的转移,如式8-5~8-8,影响反应高活性自由基和反应中间体·OH、·O2-、HO2·、H2O2 的生成、光催化氧化反应速率和量子产率.向半导体光催化体系内通入氧气可加快有机物的降解速率,因为当溶液中有O2 存在时,光生电子会和O2 作用生成·O2-,进而与H+作用生成HO2·,最终生成·OH氧化降解有机物[21].在这诸多氧化性物质共存的反应体系中,由于催化剂的表面有大量的羟基存在,因此在液相条件下光催化反应主要通过羟基自由基反应降解有机污染物.

目前针对有机物质的光催化氧化在催化剂表面上还在溶液里发生,至今仍有争议.Richard 和Lemaire 用ZnO 光催化氧化FA(糠醇)时,发现加入异丙醇起抑制作用,由此推论反应发生在溶液里.因为在碱性介质中乙酸盐几乎不在负电纳米二氧化钛表面上有吸附,但随温度升高·OH 氧化乙酸盐形成乙醇酸盐的量也升高.说明·OH 是从催化剂的表面扩散到溶液里氧化乙酸盐,证明光催化反应发生在溶液里.与此相反,当纳米二氧化钛表面带负电荷时,三氯乙酸盐降解受到抑制.从而推断反应过程发生在催化剂表面.Turchi 和Ollis 通过精细地研究,提出因为活性·OH 能够在溶液里扩散几个埃,所以光催化氧化过程不必在催化剂表面发生,而其它的研究者提出,在光照的纳米二氧化钛中,·OH 的扩散长度可能是几个原子的距离或更小.最近,更多的研究者赞同光氧化过程发生在表面位置上.例如,十氟联苯(DFBP)很强烈地吸附在(大于99%)Al2O3、纳米二氧化钛颗粒物的表面.它不容易在两个化合物之间转换(小于5%).当DFBP 吸附在Al2O3 表面上时,向该悬浮液中加H2O2,纳米二氧化钛胶体溶液(尺寸大约为0.05 微米),在UV 照射下,DFBP 光降解了.这说明H2O2 或可溶性纳米二氧化钛吸附在Al2O3 上,它们产生的·OH 迁移到DFBP/Al2O3 的反应位置上引起光氧化.相反,如果用纳米二氧化钛呈颗粒状(100 微米),或纳米二氧化钛(ZXL-001),50m2/g 代替H2O2 和可溶性纳米二氧化钛时,DFBP的光降解几乎被抑制住,而五氟酚很容易在两个金属氧化物表面间交换,在上述条件下,发生快速光降解反应,因此,有结论认为光致氧化剂不可能迁移离开纳米二氧化钛光致活性位置太远.光降解过程发生在光催化剂表面或远离表面几个原子的距离内.

半导体光催化剂受光激发产生电子—空穴对,经过一系列反应对污染物的氧化还原机理乙得到人们的共识.但从提高光催化效率和太阳光的利用率来看,还存在以下主要缺陷:一是半导体的光吸收波长范围狭窄,主要在紫外区,利用太阳光的比例低;另一是半导体载流子的复合率很高,因此量子效率较低.所以,从半导体的光催化特性被发现起,就开始对半导体光催化剂进行改性研究.改性的目的和作用包括提高激发电荷分离,抑制载流子复合以提高量子效率;扩大起作用的光波范围;改变产物的选择性或产率;提高光催化材料的稳定性等.

原因如下:电阻式半导体气体传感器主要是指半导体金属氧化物陶瓷气体传感器,是一种用金属氧化物薄膜(例如:Sn02,ZnO Fe203,Ti02等)制成的阻抗器件,其电阻随着气体含量不同而变化。气味分子在薄膜表面进行还原反应以引起传感器传导率的变化。为了消除气味分子还必须发生一次氧化反应。传感器内的加热器有助于氧化反应进程。它具有成本低廉、制造简单、灵敏度高、响应速度快、寿命长、对湿度敏感低和电路简单等优点。不足之处是必须工作于高温下、对气味或气体的选择性差、元件参数分散、稳定性不够理想、功率要求高.当探测气体中混有硫化物时,容易中毒。现在除了传统的SnO,Sn02和Fe203三大类外,又研究开发了一批新型材料,包括单一金属氧化物材料、复合金属氧化物材料以及混合金属氧化物材料。这些新型材料的研究和开发,大大提高了气体传感器的特性和应用范围。另外,通过在半导体内添加Pt,Pd,Ir等贵金属能有效地提高元件的灵敏度和响应时间。它能降低被测气体的化学吸附的活化能,因而可以提高其灵敏度和加快反应速度。催化剂不同,导致有利于不同的吸附试样,从而具有选择性。例如各种贵金属对Sn02基半导体气敏材料掺杂,Pt,Pd,Au提高对CH4的灵敏度,Ir降低对CH4的灵敏度;Pt,Au提高对H2的灵敏度,而Pd降低对H2的灵敏度。利用薄膜技术、超粒子薄膜技术制造的金属氧化物气体传感器具有灵敏度高(可达10-9级)、一致性好、小型化、易集成等特点。希望能对您有所帮助

‍‍‍‍

校准仪器校准 :采用紫外光法臭氧检测仪对已生产的臭氧检测仪进行分布选取10个测试点对比,误差范围控制在+1 %以内为合格。化学滴定法 :国际公认化学方法即碘化钾、硫代硫酸钠滴定法来检测臭氧浓度。我们也分布选取10个测试点,然后用臭氧检测仪与化学滴定法测试的10个点进行对比,误差范围控制在 +1%以内。碘化钾滴定法原理是用强氧化剂臭氧与碘化钾反应,使碘游离出来到水里,水就会变为茶色。(反应式: O3+2KI+H2O O2+I2+KOH)利用硫代硫酸钠标准液滴定,使游离碘变为碘化钠,反应终点为水完全褪色。

(反应式:I2+2Na2S2O3 2NaI+Na2S4O6)臭氧检测仪就是采用紫外线吸收法的原理,用稳定的紫外灯光源产生紫外线,用光波过滤器过滤掉其它波长紫外光,只允许波长253.7nm通过。经过样品光电传感器,再经过臭氧吸收池后,到达采样光电传感器。通过样品光电传感器和采样光电传感器电信号比较,再经过数学模型的计算,就能得出臭氧浓度大小。臭氧(O3)是氧气(O2)的同素异形体,它是一种具有特殊气味的淡蓝色气体。分子结构呈三角形,键角为116°,其密度是氧气的1.5倍,在水中的溶解度是氧气的10倍。臭氧是一种强氧化剂,它在水中的氧化还原电位为2.07V,仅次于氟(2.5V),其氧化能力高于氯(1.36V)和二氧化氯(1.5V),能破坏分解细菌的细胞壁,很快地扩散透进细胞内,氧化分解细菌内部氧化葡萄糖所必须的葡萄糖氧化酶等,也可以直接与细菌、病毒发生作用,破坏细胞、核糖核酸(RNA),分解脱氧核糖核酸(DNA)、RNA、蛋白质、脂质类和多糖等大分子聚合物,使细菌的代谢和繁殖过程遭到破坏。

‍‍‍‍


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/9157119.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-25
下一篇 2023-04-25

发表评论

登录后才能评论

评论列表(0条)

保存