碳化硅,是一种无机物,化学式为SiC,是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料通过电阻炉高温冶炼而成。碳化硅在大自然也存在罕见的矿物,莫桑石。
其结合力非常强,在热、化学、机械方面都非常稳定。SiC存在各种多型体(多晶型体),它们的物理特性值各有不同。
碳化硅(SiC)材料是功率半导体行业主要进步发展方向,用于制作功率器件,可显着提高电能利用率。
硅(Si)是研究较早的半导体材料,是第一代半导体的代表。半个多世纪以来,硅半导体技术的长足发展极大地促进了电力和电子技术的进步。尤其到了20世纪70年代,集成电路制造技术的成熟,奠定了硅在整个半导体行业中的领军地位。目前,除了极少数微波加热电源还使用真空电子管之外,几乎所有的电力和电子器件都使用Si材料来制造。尤其在集成电路中,99%以上用的都是Si半导体材料。然而随着科学的进步和半导体技术的发展,Si由于材料本身的特点在某些应用领域的局限性逐渐表现出来。例如,其带隙较窄(~1.12eV)、载流子迁移率和击穿电场较低等,限制了其在光电子领域以及高频、高功率器件方面的应用L1。 第三代半导体也称为宽带隙半导体(禁带宽度超过2.0eV),如金刚石、碳化硅(SiC)、Ⅲ一V族氮化物、Ⅱ一Ⅵ族Zn基化合物及其固溶体等。其中以金刚石、SiC、氮化镓(GaN)和氧化锌(ZnO)为第三代半导体的代表材料。宽带隙使第三代半导体具有许多共同的性能特点,包括高熔点、高临界击穿电场、高热导率、小的介电常数、大的激子束缚能、大的压电系数以及较强的极化效应等。 SiC电学性能 SiC具有较高的临界击穿电场、高热导率和饱和电子迁移率等特点,适合于制造大功率、高温、高频和抗辐射的半导体器件。SiC热导率是si的3倍,SiC材料优良的散热性有助于提高器件的功率密度和集成度。SiC材料形态决定其禁带宽度的大小,但均大于si和GaAs的禁带宽度,降低SiC器件的泄漏电流,加上SiC的耐高温特性,使得SiC器件在高温电子工作领域优势明显。因其具有高硬度和高化学稳定性等特点,使得SiC材料能胜任恶劣的工作环境。一维SiC纳米材料具有较高的禁带宽度,可由间接带隙半导体转变为直接带隙半导体,高强高韧等特点;适用于制造在恶劣环境下使用的电子器件。是碳化硅(SiC)是第三代化合物半导体材料。半导体产业的基石是芯片,制作芯片的核心材料按照历史进程分为:第一代半导体材料(大部分为目前广泛使用的高纯度硅),第二代化合物半导体材料(砷化镓、磷化铟),第三代化合物半导体材料(碳化硅、氮化镓) 。碳化硅因其优越的物理性能:高禁带宽度(对应高击穿电场和高功率密度)、高电导率、高热导率,将是未来最被广泛使用的制作半导体芯片的基础材料。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)