CPU又称中央处理器,作为计算机系统的运算和控制核心,是半导体产业技术最密集、最具战略价值的产品,是一个国家技术势力的象征。
目前CPU的市场基本被美国的两大公司垄断,分别是大哥Intel和小弟AMD,两家几乎占领了99%的市场份额。
目前Intel和AMD以X86指令集和微软共同建立了庞大的生态系统并且不对外开放,这样一来,中国队想要自己做CPU的空间不多了。
01 CPU定义
CPU在半导体行业中是人们常接触到的一种芯片,最常见的应用就是在电脑中,其中有名的有Intel的 i9-11980HK 和AMD的 R7-5800X 。
按照CPU种类来分类,可以分为服务器CPU、家用电脑CPU、嵌入式设备CPU和手机CPU,服务器CPU需要更出色的性能、稳定性和安全性,要求服务器365天开机运行,连续工作,一个服务器可以安装多个CPU;而家用电脑CPU性能要求相对较低,容量较小,不要求连续工作,一个电脑只能安装一个CPU;嵌入式设备和手机对CPU的性能要求相对更低。
按照CPU指令集架构来分类,CPU可以分为RISC和CISC。
CISC 即复杂指令系统计算机,物如其名,CISC是比较复杂的,指令系统比较丰富,有特定的指令来完成对应的功能,可以处理特殊任务。
RISC及精简指令集计算机,把精力集中在经常使用的指令上,对不常用的功能,通过组合指令来完成,实现简单高效的特点,一次RISC不能处理特殊任务。通俗来说就是经常用的功能简单化,不经常用的功能复杂化。
这其中CISC代表的指令集有X86,RISC代表的指令集有ARM、MIPS、RISC-V、Alpha、SPARS,除了这两种之外,还有我国自主研发的指令集DEC和LoongArch。
02 六大国产CPU
首先我们来了解一下什么是CPU的生态环境, CPU的生态环境就是一块CPU推出后,系统和软件对它的支持和优化有多少, 比如国产CPU龙芯就没有一个好的生态,不论是采用MIPS还是自主研发的LoongArch都不能支持Windows系统。
自主建立生态环境又难于上青天,而生态如果没有建立,软件商店就不会有软件(比如QQ在Linux中停更),这也是国产CPU发展最大的瓶颈之一。
目前国内有六大CPU设计厂商,他们是华为、飞腾、兆芯、申威、龙芯、海光(均未上市),他们分别以不同的方式参与CPU的设计。
CPU国产替代的故事得从Intel开始。
Intel趁着PC的东风迅速发展,建立了X86架构,标识了一套通用计算机指令集合,并且与微软一起在X86指令集上建立了庞大的生态。
目前的X86指令集不对外授权,只被英特尔和AMD所掌握,而X86又是PC、服务器领域做得最好的,别的指令集的生态环境远远抵不过X86,留给中国队的发展空间实属有限。
中国队CPU分为3个路线。
其一是由 龙芯 和 申威 代表的:自研指令集
龙芯最初采用的是MIPS精简指令集,制作通用CPU,主要产品是自主可控消费类例如服务器、台式机、嵌入式、航天器等领域。
申威最初采用的是Alpha精简指令集,主要应用在超级计算机和军事领域。
龙芯和申威都因为生态的原因,很难发展起来,尤其是龙芯,想要打入服务器和台式机市场必须有很好的生态。
龙芯因为MIPS的分崩离析,开始发展自己的指令集—— LoongArch ,它是完全有龙芯自主研发,可以兼容MIPS生态, 并且开始尝试用二进制翻译兼容ARM、X86处理器,龙芯的目标是在2025年消除指令集之间的壁垒,彻底搞定兼容问题。
申威也因为Alpha被收购,开始发展自主研发的指令集—— SW64 ,它是由Alpha改进而来,申威制作的神威·太湖之光超级计算机便采用SW64指令集,被称为“国之重器”,在国际上都有一定的地位,多项指标全球第一。
第二路线是由 华为 和 飞腾 代表的:ARM指令集授权
华为芯片“四大天王”麒麟、鲲鹏、巴龙、升腾中,除了巴龙以外,均采用ARM指令集授权来开发。这其中最著名的就是“麒麟”了,在手机领域一度领先,直至海外因畏惧华为的崛起,开始了制裁华为事件,就此“麒麟”短暂隐身。
飞腾也是国内目前使用ARM架构制作CPU的厂商之一,其技术不弱于高通,目前公司也被美国列入黑名单,其芯片制造环节同样被卡脖子,可能成为第二个华为。
除了华为和飞腾以外,国内以ARM架构制作芯片的厂商还有很多,例如贵州华芯通、展讯通信等。
第三路线是由 兆芯 和 海光 代表的:合资获取X86授权
兆芯的X86架构授权是源自于VIA公司将部分X86处理器相关技术、资料等IP产权以1.18亿美元价格卖给兆芯。兆芯基于X86的生态和技术,性能方面普遍高于龙芯,但还是不能和英特尔比肩。
海光的X86架构授权是通过和AMD合资公司来拥有AMD授权IP,但并不是完整的技术转让,而是阉割后的残缺版,所以性能上面和AMD锐龙、高通骁龙差一个档次。
03 RISC-V
RISC-V近些年流行的新型指令集,它是一种开源式指令集,对使用者免费开放,也是这种特性使它被众多专家认为是中国处理器产业的一次机会,而且可能是最后一次机会。
目前全球CPU的市场格局是以X86架构垄断PC、服务器行业;ARM架构垄断移动设备行业,这两家几乎涵盖了所有CPU市场需求。
X86架构归“Wintel”(英特尔+微软)所属,是一种封闭指令集,不对外授权, 简单说就是谁也别想用,就我自己能用 ;ARM架构属于可授权指令集+可授权设计, 简单说就是你用需要经过我同意并且收费,你想再它基础上设计还得再经过我同意并且再收费。
正因为如此,RISC-V作为开放式指令集,被中国队大力支持,看作救命稻草。
那RISC-V究竟有没有那么好呢?我们主要得看两方面: 一个是它的生态好不好,生态是决定指令集发展空间的最大因素;另一个就是它到底是不是彻头彻尾的免费,日后会不会再被卡脖子。
第一,RISC-V的生态怎么样。
RISC-V具有性能高、功率低、面积小、易于扩展等技术特点,最重要的是它的开源、免费的独特属性,为其带来众多合作商,影响力逐步扩大。
从2015年组织RISC-V基金会成立是的25个成员,到现在已经有超过300多个单位的加入,其中包括阿里、谷歌、华为、英伟达、高通、中科院、麻省理工等等。
日前,有知情人士表明,英特尔将以20亿美元收购RISC-V领域的重量级公司SiFive,这也表明了英特尔的态度。
虽然英特尔靠X86架构在PC、服务器领域无人能敌,但是移动设备一直是他的心病,ARM在移动设备领域是他无法抗衡的,而RISC-V的出现,给了机会。
但是看好归看好,ARM的垄断地位依旧很难撼动,RISC-V后续可能与X86联手对抗ARM,但更大的可能是打入嵌入式设备市场中,做物联网领域的“一哥”。
总体来说,不论是PC、服务器,还是移动设备,都很难被RISC-V介入,相反一些嵌入式设备比如空调、冰箱、扫地机器人、电动车等等发展环境更好。
第二,RISC-V是否永远免费。
RISC-V源于2010年,加州大学伯克利分校的一个研究团队研发,当时他们因为市场已存在的指令集相当复杂,且成本和门槛太高,所以建立了新的指令集。
“开源架构RISC-V将永久免费,成为人类共有财产。相较于X86和ARM架构的高门槛,开源架构RISC-V将带来芯片设计的革命”——RISC-V架构开发者之一Krste Asanovic博士。
这是RISC-V架构开发者的原话,表明该指令集是完全开源免费的,到目前为止他们也很好的履行了,甚至把基金会总部搬离美国,迁移至瑞士(永久中立国)以防止美国地方政策的限制。
尽管RISC-V从表现来看做得很优秀,但抽丝剥茧,终究还是有隐患在的。
实现RISC-V指令级架构的处理器内核有很多个不同的微架构实现,而微架构实际的模式是分不同类型的,其中有开放的、需授权的以及封闭的。
虽然基于RISC-V开发CPU不需要支付授权费用,但如果直接用RISC-V内核设计,也是需要支付授权费的。通俗来说就是你用我不需要收费,但是想在它的基础上设计得经过我同意,甚至收费(我们目前是全免费,但我有权利在以后收些钱)。
总结来说,目前全球的指令集呈现以X86、ARM、RISC-V三足鼎立的局势,RISC-V作为新时代的弄潮儿得到了各大厂商的认可,有发展的空间,但它不足以撼动其他两个指令集的地位,不过可以预料到的是,等RISC-V成长起来,仍然有可能对我国CPU发展卡脖子,我们需要保持隐患意识,在跟随洋人步伐的同时,发展自身CPU业务。
纵观国内厂商在电脑CPU领域,龙芯以自研为主,开发属于中国的指令集,目前已经可以满足一些党政领域以及机密工作的需求,但打入家用电脑领域仍需要提升CPU的生态和性能;服务器CPU中,申威在超算上小有成绩;华为近期也有消息称完成40nm去美化工作线投产,在明年更将攻破20nm的工作线,麒麟可能会重新归来;一些未上市公司如芯来 科技 、平头哥等也有在尝试RISC-V领域。
种种迹象都在证明,虽然我们起步慢了30年之久,但国产CPU一直在突破,路途艰辛却一路披荆斩,长夜漫漫,但黎明终将到来。
全文由各种资料查证,如有专业领域上的错误,希望可以抛砖引玉,有所探讨。
芯片全产业链图(绿底已经写完)
今天在后台回复『硬核干货』,主编送你一个 财经 知识锦囊。
(特别说明:文章中的数据和资料来自于公司财报、券商研报、行业报告、企业官网、百度百科等公开资料,本报告力求内容、观点客观公正,但不保证其准确性、完整性、及时性等。文章中的信息或观点不构成任何投资建议,投资人须对任何自主决定的投资行为负责,本人不对因使用本文内容所引发的直接或间接损失负任何责任。)
随着绿色低碳战略的不断推进,提升能源利用效率和能源转换效率已经成为各行各业的共识,如何利用现代化新技术建成可循环的高效、高可靠性的能源网络,无疑是当前各国重点关注的问题。
值此背景下,以碳化硅(SiC)、氮化镓(GaN)为代表的第三代半导体成为市场聚焦的新赛道。根据Yole预测数据, 2025年全球以半绝缘型衬底制备的GaN器件市场规模将达到20亿美元,2019-2025年复合年均增长率高达12%! 其中,军工和通信基站设备是GaN器件主要的应用市场,2025年市场规模分别为11.1亿美元和7.31亿美元
全球以导电型碳化硅衬底制备的SiC器件市场规模到2025年将达到25.62亿美元,2019- 2025年复合年均增长率高达30%! 其中,新能源汽车和光伏及储能是SiC器件主要的应用市场, 2025年市场规模分别为15.53亿美元和3.14亿美元。
本文中,我们将针对第三代半导体产业多个方面的话题,与国内外该领域知名半导体厂商进行探讨解析。
20世纪50年代以来,以硅(Si)、锗(Ge)为代的第一代半导体材料的出现,取代了笨重的电子管,让以集成电路为核心的微电子工业的发展和整个IT产业的飞跃。人们最常用的CPU、GPU等产品,都离不开第一代半导体材料的功劳。可以说是由第一代半导体材料奠定了微电子产业的基础。
然而由于硅材料的带隙较窄、电子迁移率和击穿电场较低等原因,硅材料在光电子领域和高频高功率器件方面的应用受到诸多限制。因此,以砷化镓(GaAs)为代表的第二代半导体材料开始崭露头角,使半导体材料的应用进入光电子领域,尤其是在红外激光器和高亮度的红光二极管方面。与此同时,4G通信设备因为市场需求增量暴涨,也意味着第二代半导体材料为信息产业打下了坚实基础。
在第二代半导体材料的基础上,人们希望半导体元器件具备耐高压、耐高温、大功率、抗辐射、导电性能更强、工作速度更快、工作损耗更低特性,第三代半导体材料也正是基于这些特性而诞生。
笔者注意到,对于第三代半导体产业各家半导体大厂的看法也重点集中在 “高效”、“降耗”、“突破极限” 等核心关键词上。
安森美中国汽车OEM技术负责人吴桐博士 告诉笔者: “第三代半导体优异的材料特性可以突破硅基器件的应用极限,同时带来更好的性能,这也是未来功率半导体最主流的方向。” 他表示随着第三代半导体技术的普及,传统成熟的行业设计都会有突破点和优化的空间。
英飞凌科技电源与传感系统事业部大中华区应用市场总监程文涛 则从能源角度谈到,到2025年,全球可再生能源发电量有望超过燃煤发电量,将推动第三代半导体器件的用量迅速增长。 在用电端,由于数据中心、5G通信等场景用电量巨大,节电降耗的重要性凸显,也将成为率先采用第三代半导体器件做大功率转换的应用领域。
第三代半导体材料区别于前两代半导体材料最大的区别就在于带隙的不同。 第一代半导体材料属于间接带隙,窄带隙第二代半导体材料属于直接带隙,同样也是窄带隙二第三代半导体材料则是全组分直接带隙,宽禁带。
和前两代半导体材料相比,更宽的禁带宽度允许材料在更高的温度、更强的电压与更快的开关频率下运行。
随着碳化硅、氮化镓等具有宽禁带特性(Eg>2.3eV)的新兴半导体材料相继出现,世界各国陆续布局、产业化进程快速崛起。具体来看:
与硅相比, 碳化硅拥有更为优越的电气特性 :
1.耐高压 :击穿电场强度大,是硅的10倍,用碳化硅制备器件可以极大地 提高耐压容量、工作频率和电流密度,并大大降低器件的导通损耗
2.耐高温 :半导体器件在较高的温度下,会产生载流子的本征激发现象,造成器件失效。禁带宽度越大,器件的极限工作温度越高。碳化硅的禁带接近硅的3倍,可以保证碳化硅器件在高温条件下工作的可靠性。硅器件的极限工作温度一般不能超过300℃,而碳化硅器件的极限工作温度可以达到600℃以上。同时,碳化硅的热导率比硅更高,高热导率有助于碳化硅器件的散热,在同样的输出功率下保持更低的温度,碳化硅器件也因此对散热的设计要求更低,有助于实现设备的小型化
3.高频性能 :碳化硅的饱和电子漂移速率是硅的2倍,这决定了碳化硅器件可以实现更高的工作频率和更高的功率密度。基于这些优良的特性,碳化硅衬底的使用极限性能优于硅衬底,可以满足高温、高压、高频、大功率等条件下的应用需求,已应用于射频器件及功率器件。
氮化镓则具有宽禁带、高电子漂移速度、高热导率、耐高电压、耐高温、抗腐蚀、耐辐照等突出优点。 尤其是在光电子器件领域,氮化镓器件作为LED照明光源已广泛应用,还可制备成氮化镓基激光器在微波射频器件方面,氮化镓器件可用于有源相控阵雷达、无线电通信、基站、卫星等军事 或者民用领域氮化镓也可用于功率器件,其比传统器件具有更低的电源损耗。
半导体行业有个说法: “一代材料,一代技术,一代产业” ,在第三代半导体产业规模化出现之前,也还存在着不少亟待解决的技术难题。
第三代半导体全产业链十分复杂,包括衬底→外延→设计→制造→封装。 其中,衬底是所有半导体芯片的底层材料,起到物理支撑、导热、导电等作用外延是在衬底材料上生长出新的半导体晶层,这些外延层是制造半导体芯片的重要原料,影响器件的基本性能设计包括器件设计和集成电路设计,其中器件设计包括半导体器件的结构、材料,与外延相关性很大制造需要通过光刻、薄膜沉积、刻蚀等复杂工艺流程在外延片上制作出设计好的器件结构和电路封装是指将制造好的晶圆切割成裸芯片。
前两个环节衬底和外延生长正是第三代半导体生产工艺及其难点所在。我们重点挑选碳化硅、氮化镓两种典型的第三代半导体材料来看,它们的生产制备到底还面临哪些问题。
从碳化硅来看,还需要“降低衬底生长缺陷,以及提高工艺效率” 。首先碳化硅单晶制备目前最常用的是物理气相输运法(PVT)或籽晶的升华法,而碳化硅单晶在形成最终的短圆柱状之前,还需要通过机械加工整形、切片、研磨、抛光等化学机械抛光和清洗等工艺才能成为衬底材料。
这一机械、化学制造过程存在着加工困难、制造效率低、制造成本高等问题。此外,如果再加上考虑单晶加工的效率和成本问题,那还能够保障晶片具备良好的几何形貌,如总厚度变化、翘曲度、变形,而且晶片表面质量(粗糙度、划伤等)是否过关等,这都是碳化硅衬底制备中的巨大挑战。
此外,碳化硅材料是目前仅次于金刚石硬度的材料,材料的机械加工主要以金刚石磨料为基础切割线、切割刀具、磨削砂轮等工具。这些工具的制备难度大,使用寿命短,加工成本高,为了延长工具寿命、提高加工质量,往往会采用微量或极低速进给量,这就牺牲了碳化硅材料制备的整体生产效率。
对于氮化镓来说,则更看重“衬底与外延材料需匹配”的难题 。由于氮化镓在高温生长时“氮”的离解压很高,很难得到大尺寸的氮化镓单晶材料,当前大多数商业器件是基于异质外延的,比如蓝宝石、AlN、SiC和Si材料衬底来替代氮化镓器件的衬底。
但问题是这些异质衬底材料和氮化镓之间的晶格失配和热失配非常大,晶格常数差异会导致氮化镓衬底和外延层界面处的高密度位错缺陷,严重的话还会导致位错穿透影响外延层的晶体质量。这也就是为什么氮化镓更看重衬底与外延材料需匹配的难点。
在落地到利用第三代半导体材料去解决具体问题时,程文涛告诉OFweek维科网·电子工程, 英飞凌的碳化硅器件所采用的沟槽式结构解决了大多数功率开关器件的可靠性问题。
比如现在大多数功率开关器件产品采用的是平面结构,难以在开关的效率上和长期可靠性上得到平衡。采用平面结构,如果要让器件的效率提高,给它加点电,就能导通得非常彻底,那么它的门级就需要做得非常薄,这个很薄的门级结构,在长期运行的时候,或者在大批量运用的时候,就容易产生可靠性的问题。
如果要把它的门级做的相对比较厚,就没办法充分利用沟道的导通性能。而采用沟槽式的做法就能够很好地解决这两个问题。
吴桐博士则从产业化的角度提出, 第三代半导体技术的难点在于有关设计技术和量产能力的协调,以及对长期可靠性的保障。尤其是量产的良率,更需要持续性的优化,降低成本,提升可靠性。
观察当前半导体市场可以发现,占据市场九成以上的份额的主流产品依然是硅基芯片。
但近些年来,“摩尔定律面临失效危机”的声音不绝于耳,随着芯片设计越来越先进,芯片制造工艺不断接近物理极限和工程极限,芯片性能提升也逐步放缓,且成本不断上升。
业界也因此不断发出质疑,未来芯片的发展极限到底在哪,一旦硅基芯片达到极限点,又该从哪个方向下手寻求芯片效能的提升呢?笔者通过采访发现,国内外厂商在面对这一问题时,虽然都表达出第三代半导体产业未来值得期待,但也齐齐提到在这背后还需要重点解决的成本问题。
“目前硅基半导体从架构上、从可靠性、从性能的提升等方面,基本上已经接近了物理极限。第三代半导体将接棒硅基半导体,持续降低导通损耗,在能源转换的领域作出贡献,” 程文涛也为笔者描述了当前市场上的一种现象:可能会存在一些定价接近硅基半导体的第三代半导体器件,但并不代表它的成本就接近硅基半导体。因为那是一种商业行为,就是通过低定价来催生这个市场。
以目前的工艺来讲,第三代半导体的成本还是远高于硅基半导体 ,程文涛表示:“至少在可见的将来,第三代半导体不会完全取代第一代半导体。因为从性价比的角度来说,在非常宽的应用范围中,硅基半导体目前依然是不二之选。第三代半导体目前在商业化上的瓶颈就是成本很高,虽然在迅速下降,但依然远高于硅基半导体。”
作为中国碳化硅功率器件产业化的倡导者之一,泰科天润同样也表示对第三代半导体产业发展的看好。
虽然碳化硅单价目前比硅高不少,但从系统整体的角度来看,可以节约电感电容以及散热片。如果是大功率电源系统整体角度看成本未必更高,同时还能更好地提升效率。 这也是为什么现阶段虽然单器件碳化硅比硅贵,依然不少领域客户已经批量使用了。
从器件的角度来看,碳化硅从四寸过度到六寸,未来往八寸甚至十二寸发展,碳化硅器件的成本也将大幅度下降。据泰科天润介绍,公司新的碳化硅六寸线于去年就已经实现批量出货,为客户提供更高性价比的产品,有些产品实现20-30%的降价幅度。除此之外,泰科天润耗时1年多成功开发了碳化硅减薄工艺,在Vf水平不变的情况下,可以缩小芯片面积,进一步为客户提供性价比更高的产品。
泰科天润还告诉笔者:“这两年随着国外友商的缺货或涨价,比如一些高压硅器件,这些领域已经出现碳化硅取代硅的现象。随着碳化硅晶圆6寸产线生产技术的成熟,8寸晶圆的发展,碳化硅器件有望与硅基器件达到相同的价格水平。”
吴桐博士认为, 目前来看在不同的细分市场,第三代半导体跟硅基器件是一个很好的互补,也是价钱vs性能的一个平衡。随着第三代半导体的成熟以及成本的降低,最终会慢慢取代硅基产品成为主流方案。
那么对于企业而言,该如何发挥第三代半导体的综合优势呢?吴桐博士表示,于安森美而言,首先是要垂直整合,保证稳定的供应链,可长期规划的产能布局以及达到客观的投资回报率其次是在技术研发上继续发力,比如Rsp等参数,相比行业水准,实现用更小的半导体面积实现相同功能,这样单个器件成本得以优化第三是持续地提升FE/BE良率,等效的降低成本第四是与行业大客户共同开发定义新产品,保证竞争力以及稳定的供需关系最后也是重要的一点,要帮助行业共同成长,蛋糕做大,产能做强,才能使得单价有进一步下降的空间。
第三代半导体产业究竟掀起了多大的风口?根据《2020“新基建”风口下第三代半导体应用发展与投资价值白皮书》内容:2019年我国第三代半导体市场规模为94.15亿元,预计2019-2022年将保持85%以上平均增长速度,到2022年市场规模将达到623.42亿元。
其中,第三代半导体衬底市场规模从7.86亿元增长至15.21亿元,年复合增速为24.61%,半导体器件市场规模从86.29亿元增长至608.21亿元,年复合增速为91.73%。
得益于第三代半导体材料的优良特性,它在 光电子、电力电子、通讯射频 等领域尤为适用。具体来看:
光电子器件 包括发光二极管、激光器、探测器、光子集成电路等,多用于5G通信领域,场景包括半导体照明、智能照明、光纤通信、光无线通信、激光显示、高密度存储、光复印打印、紫外预警等
电力电子器件 包括碳化硅器件、氮化镓器件,多用于新能源领域,场景包括消费电子、新能源汽车、工业、UPS、光伏逆变器等
微波射频器件 包括HEMT(高电子迁移率晶体管)、MMIC(单片微波集成电路)等,同样也是用在5G通信领域,不过场景则更加高端,包括通讯基站及终端、卫星通讯、军用雷达等。
现阶段,欧美日韩等国第三代半导体企业已形成规模化优势,占据全球市场绝大多数市场份额。我国高度重视第三代半导体发展,在研发、产业化方面出台了一系列支持政策。国家科技部、工信部等先后开展了“战略性第三代半导体材料项目部署”等十余个专项,大力支持第三代半导体技术和产业发展。
早在2014年,工信部发布的《国家集成电路产业发展推进纲要》提出设立国家产业投资基金,重点支持集成电路等产业发展,促进工业转型升级,同时鼓励社会各类风险投资和股权投资基金进入集成电路领域在去年全国人大发布《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》中,进一步强调培育先进制造业集群,推动集成电路、航空航天等产业创新发展。瞄准人工智能、量子信息、集成电路等前沿领域,实施一批具有前瞻性、战略性的国家重大科技项目。
具体来看当前主要应用领域的发展情况:
1.新能源汽车
新能源汽车行业是未来市场空间巨大的新兴市场,全球范围内新能源车的普及趋势明朗。随着电动汽车的发展,对功率半导体器件需求量日益增加,成为功率半导体器件新的经济增长点。得益于碳化硅功率器件的高可靠性及高效率特性,在车载级的电机驱动器、OBC及DC/DC部分,碳化硅器件的使用已经比较普遍。对于非车载充电桩产品, 由于成本的原因,目前使用比例还相对较低,但部分厂商已开始利用碳化硅器件的优势,通过降低冷却等系统的整体成本找到了市场。
2.光伏
光伏逆变器曾普遍采用硅器件,经过40多年的发展,转换效率和功率密度等已接近理论极限。碳化硅器件具有低损耗、高开关频率、高适用性、降低系统散热要求等优点,将在光伏新能源领域得到广泛应用。例如,在住宅和商业设施光伏系统中的组串逆变器里,碳化硅器件在系统级层面带来成本和效能的好处。
3.轨道交通
未来轨道交通对电力电子装置,比如牵引变流器、电力电子电压器等提出了更高的要求。采用碳化硅功率器件可以大幅度提高这些装置的功率密度和工作效率,有助于明显减轻轨道交通的载重系统。目前,受限于碳化硅功率器件的电流容量,碳化硅混合模块将首先开始替代部分硅IGBT模块。未来随着碳化硅器件容量的提升,全碳化硅模块将在轨道交通领域发挥更大的作用。
4.智能电网
目前碳化硅器件已经在中低压配电网开始了应用。未来更高电压、更大容量、更低损耗的柔性输变电将对万伏级以上的碳化硅功率器件具有重大需求。碳化硅功率器件在智能电网的主要应用包括高压直流输电换流阀、柔性直流输电换流阀、灵活交流输电装置、高压直流断路器、电力电子变压器等装置中。
第三代半导体自从在2021年被列入十四五规划后,相关概念持续升温,迅速成为超级风口,投资热度高居不下。
时常会听到业内说法称,第三代半导体国内外都是同一起跑线出发,目前大家差距相对不大,整个产业发展仍处于爆发前的“抢跑”阶段,对国内而言第三代半导体材料更是有望成为半导体产业的“突围先锋”,但事实真的是这样吗?
从起步时间来看,欧日美厂商率先积累专利布局,比如 英飞凌一直走在碳化硅技术的最前沿,从30年前(1992年)开始包含碳化硅二极管在内的功率半导体的研发,在2001年发布了世界上第一款商业化碳化硅功率二极管 ,此后至今英飞凌不断推出了各种性能优异的碳化硅功率器件。除了产品本身,英飞凌在2018年收购了Siltectra,致力于通过冷切割技术优化工艺流程,大幅提高对碳化硅原材料的利用率,有效降低碳化硅的成本。
安森美也是第三代半导体产业布局中的佼佼者,据笔者了解, 安森美通过收购上游碳化硅供应企业GTAT实现了产业链的垂直整合,确保产能和质量的稳定。同时借助安森美多年的技术积累以及几年前收购Fairchild半导体基因带来的技术补充,安森美的碳化硅技术已经进入第三代,综合性能在业界处于领先地位 。目前已成为世界上少数提供从衬底到模块的端到端碳化硅方案供应商,包括碳化硅球生长、衬底、外延、器件制造、同类最佳的集成模块和分立封装方案。
具体到技术上, 北京大学教授、宽禁带半导体研究中心主任沈波 也曾提出,国内第三代半导体和国际上差距比较大,其中很重要的领域之一是碳化硅功率电子芯片。这一块国际上已经完成了多次迭代,虽然8英寸技术还没投入量产,但是6英寸已经是主流技术,二极管已经发展到了第五代,三极管也发展到了第三代,IGBT也已进入产业导入前期。
另外车规级的碳化硅MOSFET模块在意法半导体率先通过以后,包括罗姆、英飞凌、科锐等国际巨头也已通过认证,国际上车规级的碳化硅芯片正逐渐走向规模化生产和应用。反观国内,目前真正量产的主要还是碳化硅二极管,工业级MOSFET模块估计到明年才能实现规模量产,车规级碳化硅模块要等待更长时间才能量产。
泰科天润也直言,国内该领域仍处于后发追赶阶段:器件方面,从二极管的角度, 国产碳化硅二极管基本上水平和国外差距不大,但是碳化硅MOSFET国内外差距还是有至少1-2代的差距 可靠性方面,国外碳化硅产品市场应用推广较早,积累了更加丰富的应用经验,对产品可靠性的认知,定义以及关联解决可靠性的方式都走得更前一些,国内厂家也在推广市场的过程中逐步积累相关经验产业链方面,国外厂家针对碳化硅的材料优势,相关匹配的产业链都做了对应的优化设计,使之能更加契合的体现碳化硅的材料优势。
OFweek维科网·电子工获悉,泰科天润在湖南新建的碳化硅6寸晶圆产线,第一期60000片/六寸片/年。此产线已经于去年实现批量出货,2022年始至4月底已经接到上亿元销售订单。 作为国内最早从事碳化硅芯片生产研发的公司,泰科天润积累了10余年的生产经验,针对特定领域可以结合自身的研发,生产和工艺一体化,快速为客户开发痛点新品 ,例如公司全球首创的史上最小650V1A SOD123,专门针对解决自举驱动电路已经替换高压小电流Si FRD解决反向恢复的痛点问题而设计。
虽然说IDM方面,我国在碳化硅器件设计方面有所欠缺,少有厂商涉及于此,但后发追赶者也不在少数。
就拿碳化硅产业来看,单晶衬底方面国内已经开发出了6英寸导电性碳化硅衬底和高纯半绝缘碳化硅衬底。 山东天岳、天科合达、河北同光、中科节能 均已完成6英寸衬底的研发,中电科装备研制出6英寸半绝缘衬底。
此外,在模块、器件制造环节我国也涌现了大批优秀的企业,包括 三安集成、海威华芯、泰科天润、中车时代、世纪金光、芯光润泽、深圳基本、国扬电子、士兰微、扬杰科技、瞻芯电子、天津中环、江苏华功、大连芯冠、聚力成半导体 等等。
OFweek维科网·电子工程认为,随着我国对新型基础建设的布局展开和“双碳”目标的提出,碳化硅和氮化稼等第三代半导体的作用也愈发凸显。
上有国家支持政策,下有新能源汽车、5G通信等旺盛市场需求, 我国第三代半导体产业也开始由“导入期”向“成长期”过渡,初步形成从材料、器件到应用的全产业链。但美中不足在于整体技术水平还落后世界顶尖水平好几年,因此在材料、晶圆、封装及应用等环节的核心关键技术和可靠性、一致性等工程化应用问题上还需进一步完善优化。
当前,全球正处于新一轮科技和产业革命的关键期,第三代半导体产业作为新一代电子信息技术中的重点组成部分,为能源革命带来了深刻的改变。
在此背景下,OFweek维科网·电子工程作为深耕电子产业领域的资深媒体,对全球电子产业高度关注,紧跟产业发展步伐。为了更好地促进电子工程师之间技术交流,推动国内电子行业技术升级,我们继续联袂数十家电子行业企业技术专家,推出面向电子工程师技术人员的专场在线会议 「OFweek 2022 (第二期)工程师系列在线大会」 。
本期在线会议将于6月22日在OFweek官方直播平台举办,将邀请国内外知名电子企业技术专家,聚焦半导体领域展开技术交流,为各位观众带来技术讲解、案例分享和方案展示。
半导体的发现实际上可以追溯到很久以前。
1833年,英国科学家电子学之父法拉第最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。
不久,1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征。
1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。
半导体的这四个效应,(jianxia霍尔效应的余绩──四个伴生效应的发现)虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。
在1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。
扩展资料:
人物贡献:
1、英国科学家法拉第(MIChael Faraday,1791~1867)
在电磁学方面拥有许多贡献,但较不为人所知的,则是他在1833年发现的其中一种半导体材料。
硫化银,因为它的电阻随着温度上升而降低,当时只觉得这件事有些奇特,并没有激起太大的火花;
然而,今天我们已经知道,随着温度的提升,晶格震动越厉害,使得电阻增加,但对半导体而言,温度上升使自由载子的浓度增加,反而有助于导电,这也是半导体一个非常重要的物理性质。
2、德国的布劳恩(Ferdinand Braun,1850~1918)。
注意到硫化物的电导率与所加电压的方向有关,这就是半导体的整流作用。
但直到1906年,美国电机发明家匹卡(G. W. PICkard,1877~1956),才发明了第一个固态电子元件:无线电波侦测器(cat’s whisker),它使用金属与硅或硫化铅相接触所产生的整流功能,来侦测无线电波。
在整流理论方面,德国的萧特基(Walter Schottky,1886~1976)在1939年,于「德国物理学报」发表了一篇有关整流理论的重要论文,做了许多推论,他认为金属与半导体间有能障(potential barrier)的存在,其主要贡献就在于精确计算出这个能障的形状与宽度。
3、布洛赫(Felix BLOCh,1905~1983)
在这方面做出了重要的贡献,其定理是将电子波函数加上了周期性的项,首开能带理论的先河。
另一方面,德国人佩尔斯(Rudolf Peierls, 1907~ ) 于1929年,则指出一个几乎完全填满的能带,其电特性可以用一些带正电的电荷来解释,这就是电洞概念的滥觞;
他后来提出的微扰理论,解释了能隙(Energy gap)存在。
参考资料来源:百度百科-半导体
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)