间接带隙半导体材料导带最小值(导带底)和满带最大值在k空间中不同位置。形成半满能带不只需要吸收能量,还要改变动量。
间接带隙半导体材料导带最小值(导带底)和满带最大值在k空间中不同位置。电子在k状态时的动量是(h/2pi)k,k不同,动量就不同,从一个状态到另一个必须改变动量。
半导体掺杂之后会引入杂志能级,以目前主流的半导体Si进行掺杂为例:Si为4族元素,掺杂3族元素B,B元素电离后作为受主能级存在在半导体之中,形成P型半导体。此时Si元素为杂志提供了电子,则半导体中载流子为空穴。Si为4族元素,掺杂5族元素P,P元素电离后作为施主能级存在在半导体之中,形成N型半导体。此时Si元素为杂志提供了空穴,则半导体中载流子为电子。 掺杂后引入杂质能级(轻掺杂):P半导体的受主能级会在Ei 下方,即接近价带顶。N半导体的施主能级会在Ei上方,即接近导带底。Ei为能带中线。一般来说,掺杂过后Eg(带隙)不会发生较大改变。Eg = Ec-Ev,Ec为导带底、Ev为价带顶。如果可以看态密度图的话,可以将态密度图与能带图相对应,找出能级贡献量较大的离子,如果该能级为Si提供,则可以判断为原能级,如果能级为P、B提供则为引入的杂志能级。 希望能帮到你,谢谢确定半导体是直接带隙还是间接带隙的可以用光致发光光谱。
光效率很大的话差不多就是直接带隙,发光效率低的话就是间接带隙。直接带隙材料吸收光谱应该能比较明显地区分出本征吸收带和吸收边,变化相对较缓,而间接带隙材料比较陡峭。
间接带隙半导体材料(如Si、Ge)导带最小值(导带底)和满带最大值在k空间中不同位置。形成半满能带不只需要吸收能量,还要改变动量。
电子在k状态时的动量是(h/2pi)k,k不同,动量就不同,从一个状态到另一个必须改变动量。与之相对的直接带隙半导体则是电子在跃迁至导带时不需要改变动量。
扩展资料:
光致发光过程包括荧光发光和磷光发光。通常用于半导体检测和表征的光致发光光谱指的是光致荧光发光。
光致发光特点:
1、光致发光优点
设备简单,无破坏性,对样品尺寸无严格要求;分辨率高,可做薄层和微区分析。
2、光致发光缺点
通常只能做定性分析,而不作定量分析;如果做低温测试,需要液氦降温,条件比较苛刻;不能反映出非辐射复合的深能级缺陷中心。
参考资料来源:百度百科--光致发光光谱
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)