sinx和cosx的函数图像如下图所示:
一般的,在直角坐标系中,给定单位圆,对任意角α,使角α的顶点与原点重合,始边与x轴非负半轴重合,终边与单位圆交于点P(u,v),那么点P的纵坐标v叫做角α的正弦函数,记作v=sinα。通常,我们用x表示自变量,即x表示角的大小,用y表示函数值,这样我们就定义了任意角的三角函数y=sin x,它的定义域为全体实数,值域为[-1,1]。
余弦(余弦函数),三角函数的一种。在Rt△ABC(直角三角形)中,∠C=90°,∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB,余弦函数:f(x)=cosx(x∈R)。
对称轴与对称中心:
y=sinx 对称轴:x=kπ+π/2(k∈z) 对称中心:(kπ,0)(k∈z)。
y=cosx 对称轴:x=kπ(k∈z) 对称中心:(kπ+π/2,0)(k∈z)。
y=tanx 对称轴:无对称中心:(kπ,0)(k∈z)。
画法:先画tan2x的图像,然后向右移动π/6,就是答案。
tan(2x-π/3)=tan2(x-π/6)
也就是说,这个函数的周期为π/2。
X≠Kpai+pai/2,故不是连续的。
扩展资料:
k×π/2±a(k∈z)的三角函数值
(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;
(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。
-三角函数公式
arctanx函数图像如下:
反正切函数是反三角函数中的反正切,意为:tan(a)=b;等价于Arctan(b)=a。
和角公式:
sin ( α ± β ) = sinα · cosβ ± cosα · sinβ
sin ( α + β + γ ) = sinα · cosβ · cosγ + cosα · sinβ · cosγ + cosα · cosβ · sinγ - sinα · sinβ · sinγ
cos ( α ± β ) = cosα cosβ ∓ sinβ sinα
tan ( α ± β ) = ( tanα ± tanβ ) / ( 1 ∓ tanα tanβ )
tanx图像如下:
cotx图像如下:
在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是tanB=b/a,即tanB=AC/BC。
在直角三角形中,某锐角的相邻直角边和相对直角边的比,叫做该锐角的余切。余切与正切互为倒数,用“cot+角度”表示。余切函数的图象由一些隔离的分支组成。余切函数是无界函数,可取一切实数值,也是奇函数和周期函数,其最小正周期是π 。
扩展资料:
三角函数记忆口诀:
三角函数是函数,象限符号坐标注。函数图像单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字一,连结顶点三角形。向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,
变成锐角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
一加余弦想余弦,一减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。
参考资料:
-三角函数
三角函数的图像与性质就是分别在0,+-π/2,π等位置,三家函数的对应取值,以及曲线变化规律。
sin^2a+cos^2a=1
倍角公式:
sin(2α)=2sinα·cosα
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
特殊三角函数抄值一般指在0,bai30°,45°,60°,90°,180°角下的正余弦值。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。
定义:
六个三角函数也可以依据半径为1中心为原点的单位圆来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。
但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在 0 和 π/2弧度之间的角。它也提供了一个图像,把所有重要的三角函数都包含了。根据勾股定理,单位圆的方程是:对于圆上的任意点(x,y),x²+y²=1。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)