柯西收敛准则没有六种形式,只有一种形式,柯西极限存在准则又叫柯西收敛原理,给出了收敛的充分必要条件。
柯西极限存在准则,又称柯西收敛准则,是用来判断某个式子是否收敛的充要条件(不限于数列),主要应用在以下方面:数列、数项级数、函数、反常积分、函数列和函数项级数每个方面都对应一个柯西准则,因此下文将按照不同的方面对准则进行说明。
充分性
由于数列的柯西收敛准则是实数连续性的体现之一,所以用实数公理——戴德金定理证明{xn}收敛。
首先证明柯西序列是有界的。根据柯西序列的定义,对任意ε>0,存在正整数N,当m,n>N时,有|xn-xm|<ε。
于是取m=N+1,则当n>N时,|xn-xN+1|<ε。
解得xN+1-ε<xn<xN+1+ε,即当n>N时,{xn}既有上界又有下界,所以是有界的。
柯西积分公式是一把钥匙,他开启了许多方法与定理;他刻画了解析函数的又一种定义;人们对它的研究极具意义,让解析函数论能够单独脱离于实函数。
柯西积分公式的基本内容是这样叙述的:若函数f(z)在简单正向闭曲线C所围成的区域D内解析,在区域D的边界C上连续,z0 是区域D内任意一点,则有柯西积分公式。
柯西积分公式对于无界区域也成立:如果无界区域 D(包含∞在内, D的边界是有限条简单闭曲线C,函数在内除了点∞外是解析的。
(其中C的方向取负方向,ζ是一个记号,仅为了与z区分)。
柯西积分公式说明:如果一个函数在简单闭合曲线C的内部解析,在C上连续,则函数在C内部的值完全可由C上的值而定。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)