确定数据的权重也是进行数据分析的重要前提。可以利用SPSS的因子分析方法来确定权重。主要步骤是:
(1)首先将数据标准化,这是考虑到不同数据间的量纲不一致,因而必须要无量纲化。
(2)对标准化后的数据进行因子分析(主成分方法),使用方差最大化旋转。
(3)写出主因子得分和每个主因子的方程贡献率。 Fj =β1jX1 +β2jX2 +β3jX3 + + βnjXn ; Fj 为主成分(j=1、2、、m),X1、X2 、X3 、、Xn 为各个指标,β1j、β2j、β3j、、βnj为各指标在主成分Fj 中的系数得分,用ej表示Fj的方程贡献率。
(4)求出指标权重。 ωi=[(m∑j)βijej]/[(n∑i)(m∑j)βijej],ωi就是指标Xi的权重。
扩展资料因子分析的基本思想是根据相关性大小把原始变量分组,使得同组内的变量之间相关性较高,而不同组的变量间的相关性则较低。
每组变量代表一个基本结构,并用一个不可观测的综合变量表示,这个基本结构就成为公共因子,对于所研究的某一具体问题,原始变量就可以分解成两部分之和的形式,一部分是少数几个不可测的所谓公共因子的线性函数,另一部分是与公共因子无关的特殊因子。
-spss
spssau分析前勾选即可。
如果是主成分分析,综合得分是自己算的,即factor做完之后,因子载荷矩阵下面那个带score的的表格就是计算主成分得分的系数矩阵,将原始数据标准化后的结果带入方程式,得到各个主因子的综合的得分;
若要计算综合得分,则需要在写一个方程式,Y=Y1a+y2b……,y1,y2……为各个主成分得分,a,b……为各个主成分的发差贡献率,在特征值那表里头。最后得到Y即为综合得分。
扩展资料:
SPSS的每个新增版本都会对数据管理功能作一些改进,以使用户的使用更为方便。
改进的Autorecode过程:该过程将可以使用自动编码模版,从而用户可以按自定义的顺序,而不是默认的ASCII码顺序进行变量值的重编码。另外,Autorecode过程将可以同时对多个变量进行重编码,以提高分析效率。
-SPSS
步骤如下:
1、在新建的Excel表格中,插入六列数据,有种类、AC1、AC2、AC3、AC4和AC5;
2、打开SPSS分析工具,点击文件菜单,打开数据选择excel表格,从而导入数据;
3、导入数据之后,调整变量列展示的宽度,展示默认数据视图;
4、单击分析菜单,然后选择降维中的因子;
5、打开因子分析窗口,将AC1、AC2、AC3、AC4和AC5移到变量框中;
6、点击描述按钮,打开对应的窗口,统计勾选初始解,相关系数矩阵勾选系数和KMO和巴特利特球形度检验;
7、接着点击提取按钮,打开窗口并勾选分析相关性矩阵,显示勾选未旋转因子解和碎石图;
8、选择旋转打开窗口,方法选择最大方差法,显示勾选旋转后的解和载荷图;
9、点击得分按钮,打开因子得分窗口,勾选保存为变量,方法选择回归,然后单击继续;
10、最后设置选项,缺失值勾选成列排除个数,系数显示格式勾选按大小排序,然后点击继续;
11、确定之后,生成因子分析结果,有相关性矩阵、KMO和巴特利特检验;
12、根据已选的几个变量,生成公因子方差和总方差解释;
13、接着,生成以组件号为横坐标,特征值为纵坐标,构成碎石图;
14、还可以生成成分矩阵和旋转后的成分矩阵,提取方法是主成分分析法;
15、在成分转换矩阵下方,生成旋转后的空间中的组件图;
16、最后按照成分,生成成分得分系数矩阵和成分得分协方差矩阵。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)