冲激响应和阶跃响应的关系:冲激响应与阶跃响应都属于零状态响应,而且分别是特殊激励条件下的零状态响应。
冲激响应”完全由系统本身的特性所决定,与系统的激励源无关,是用时间函数表示系统特性的一种常用方式。
在实际工程中,用一个持续时间很短,但幅度很大的电压脉冲通过一个电阻给电容器充电,这时电路中的电流或电容器两端的电压变化就近似于这个系统的冲激响应。
在这种情况下,电容器两端的电压在很短的时间内就达到了一定的数值,然后就通过电阻放电,在此过程中,电容电压和电路中的电流都按指数规律逐渐衰减为零。
在一般情况下,当无源系统的特性可以用一个N阶线性微分方程表示时,该系统的冲激响应中包含有N个指数函数。指数中自变量(时间)的系数是实数或呈共轭对的复数,一对复系数构成一个“复频率”,相应的两项对应于冲激响应中的一个幅度按照指数规律衰减的正弦波。
微分方程解中的常数按照系统的“初始条件”确定。为了获得在单位冲激函数激励下的“初始条件”,可以采用“冲激平衡原则”,就是在微分方程的等号两边,冲激函数和它的各阶导数必须相等。
因此,如果在等号右边有冲激函数的最高阶导数,那么在方程左边响应的最高阶导数中也必定包含有相同系数的这个冲激函数的最高阶导数,以此类推。
设响应的k阶导数中含有一个幅度为A的冲激函数,那么响应的K-1阶导数的初始值就等于A,以此类推,就可以得到一组有N个方程组成的,含有N个待定常数的方程组。
当激励为单位冲激函数时,电路的零状态响应称为单位冲激响应,简称冲激响应。
不要从这个方程分析,这个方程分析不出来的。
先去积分号,第一项冲激函数的导数是冲击偶,是个奇函数,第二项也是冲激函数,右项是冲激函数。奇函数加冲激函数还等于冲激函数显然不成立。
冲激函数和阶跃函数关系介绍如下:
单位冲激函数等于单位阶跃函数对时间变量的导数。反之,单位阶跃函数等于单位冲激函数的积分。
阶跃响应g(t)定义为:系统在单位阶跃信号u(t)的激励下产生的零状态响应。即激励所发出的信号为阶跃函数,产生了零状态响应(电路的储能元器件(电容、电感类元件)无初始储能,仅由外部激励作用而产生的响应。
阶跃函数研究:
自然生态
利用阶跃函数提出数学模型解决自然生态问题。例如《基于阶跃函数的红树林凋落物变化模型研究》:由于凋落物随时间变化而存在峰值,利用阶跃函数,解决了分段模型一直无法解决的两个问题:一是变点的数学确定方法,另一个是变点的连续性问题。建立了基于符号函数的阶跃函数模型,并以此为基础,提出了具有峰值的凋落物耦合模型。
高精度
改进了阶跃函数及其反函数的近似逼近函数——磨光函数和过滤函数,以提高ICM(Independent Continuous and Mapping,即独立、连续及映射)方法求解结构拓扑优化问题的效率。
工程领域
如通过延迟阶跃函数求解重复性项目控制路线的方法研究、桥梁气动导纳识别的阶跃函数拟合法、用多项式和阶跃函数构造网格多涡卷混沌吸引子及其电路实现等等都有不同程度上的发现。
1、冲激偶信号在零点处的值是多少
是0 。因为冲激偶信号是冲激函数的导数,冲激函数是偶函数,根据导数的奇偶特性可知冲击偶信号是一个奇函数,而奇函数在零点的值为0
2、冲激偶信号的绝对值是多少?
3、冲激偶信号的绝对值从负无穷到正无穷的积分又是多少?
我猜你是想问,冲激偶信号是否绝对可积,对吗?(经过与LZ讨论)冲激偶不是绝对可积的,理由如下:冲激偶信号是正、负极性的一对冲激,它们的强度无限大,取绝对值后,负极性翻转为正极性,就成了一对强度都为无限大的正极性的冲激,取绝对值积分的过程相当于求其强度的过程,自然是非绝对可积的。
4、关于你说的题
此题判定h(t)是否绝对可积更好。关于你说的收敛域,我认为那应该是离散时间系统的稳定性判定方法。既然上面已经说了冲激偶是非绝对可积的,那么该系统不是稳定系统
PS祝考研成功
关于补充问题:
是否因果要看输出是否只和现在与过去的输入有关。对于y(2t)=f(t),可以验证y(-2)=f(-1),输出和以后的输入有关,所以非因果。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)