参考:https://blog.csdn.net/zwhooo/article/details/79696558 Pandas对DataFrame单列/多列进行运算(map, apply, transform, agg)
1.单列运算
在Pandas中,DataFrame的一列就是一个SerIEs, 可以通过map来对一列进行 *** 作:
df['col2'] = df['col1'].map(lambda x: x**2)
其中lambda函数中的x代表当前元素。可以使用另外的函数来代替lambda函数,例如:
define square(x): return (x ** 2) df['col2'] = df['col1'].map(square)
注:举个例子,运用apply,对某一个整列的数据train['time'],进行加1 *** 作:(此处使用apply,很好用!!!!!)
max_min_scaler = lambda x : x+1train['time']= train['time'].apply(max_min_scaler) #运用apply,对整列数据train['time']进行加1 *** 作
2.多列运算
要对DataFrame的多个列同时进行运算,可以使用apply,例如col3 = col1 + 2 * col2:
df['col3'] = df.apply(lambda x: x['col1'] + 2 * x['col2'], axis=1)
其中x带表当前行,可以通过下标进行索引。
3.分组运算
可以结合groupby与transform来方便地实现类似sql中的聚合运算的 *** 作:
df['col3'] = df.groupby('col1')['col2'].transform(lambda x: (x.sum() - x) / x.count())
在transform函数中x.sum()与x.count()与sql类似,计算的是当前group中的和与数量,还可以将transform的结果作为一个一个映射来使用, 例如:
sumcount = df.groupby('col1')['col2'].transform(lambda x: x.sum() + x.count()) df['col1'].map(sumcount)
对col1进行一个map,得到对应的col2的运算值。
4.聚合函数
结合groupby与agg实现sql中的分组聚合运算 *** 作,需要使用相应的聚合函数:
df['col2'] = df.groupby('col1').agg({'col1':{'col1_mean': mean, 'col1_sum‘’: sum}, 'col2': {'col2_count': count}})
上述代码生成了col1_mean, col1_sum与col2_count列。
以上是内存溢出为你收集整理的python:DataFrame对单列或多列进行整列的运算(map, apply, transform, agg)全部内容,希望文章能够帮你解决python:DataFrame对单列或多列进行整列的运算(map, apply, transform, agg)所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)