卷积在pytorch中有两种实现,一种是torch.nn.Conv2d(),一种是torch.nn.functional.conv2d(),这两种方式本质都是执行卷积 *** 作,对输入的要求也是一样的,首先需要输入的是一个torch.autograd.Variable()的类型,大小是(batch,channel, H,W),其中batch表示输入的一批数据的数目,channel表示输入的通道数。
一般一张彩色的图片是3,灰度图片是1,而卷积网络过程中的通道数比较大,会出现几十到几百的通道数。H和W表示输入图片的高度和宽度,比如一个batch是32张图片,每张图片是3通道,高和宽分别是50和100,那么输入的大小就是(32,3,50,100)。
如下代码是卷积执行soble边缘检测算子的实现:
import torchimport numpy as npfrom torch import nnfrom PIL import Imagefrom torch.autograd import Variableimport torch.nn.functional as Fdef nn_conv2d(im): # 用nn.Conv2d定义卷积 *** 作 conv_op = nn.Conv2d(1,1,3,bias=False) # 定义sobel算子参数 sobel_kernel = np.array([[-1,-1,-1],[-1,8,-1]],dtype='float32') # 将sobel算子转换为适配卷积 *** 作的卷积核 sobel_kernel = sobel_kernel.reshape((1,3)) # 给卷积 *** 作的卷积核赋值 conv_op.weight.data = torch.from_numpy(sobel_kernel) # 对图像进行卷积 *** 作 edge_detect = conv_op(Variable(im)) # 将输出转换为图片格式 edge_detect = edge_detect.squeeze().detach().numpy() return edge_detectdef functional_conv2d(im): sobel_kernel = np.array([[-1,dtype='float32') # sobel_kernel = sobel_kernel.reshape((1,3)) weight = Variable(torch.from_numpy(sobel_kernel)) edge_detect = F.conv2d(Variable(im),weight) edge_detect = edge_detect.squeeze().detach().numpy() return edge_detectdef main(): # 读入一张图片,并转换为灰度图 im = Image.open('./cat.jpg').convert('L') # 将图片数据转换为矩阵 im = np.array(im,dtype='float32') # 将图片矩阵转换为pytorch tensor,并适配卷积输入的要求 im = torch.from_numpy(im.reshape((1,im.shape[0],im.shape[1]))) # 边缘检测 *** 作 # edge_detect = nn_conv2d(im) edge_detect = functional_conv2d(im) # 将array数据转换为image im = Image.fromarray(edge_detect) # image数据转换为灰度模式 im = im.convert('L') # 保存图片 im.save('edge.jpg',quality=95)if __name__ == "__main__": main()
原图片:cat.jpg
结果图片:edge.jpg
以上这篇Pytorch 实现sobel算子的卷积 *** 作详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
总结以上是内存溢出为你收集整理的Pytorch 实现sobel算子的卷积 *** 作详解全部内容,希望文章能够帮你解决Pytorch 实现sobel算子的卷积 *** 作详解所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)