python 排序算法总结及实例详解

python 排序算法总结及实例详解,第1张

概述总结了一下常见集中排序的算法归并排序归并排序也称合并排序,是分治法的典型应用。分治思想是将每个问题分解成个个小问题,将每个小问题解决,然后合并。

总结了一下常见集中排序的算法

归并排序

归并排序也称合并排序,是分治法的典型应用。分治思想是将每个问题分解成个个小问题,将每个小问题解决,然后合并。

具体的归并排序就是,将一组无序数按n/2递归分解成只有一个元素的子项,一个元素就是已经排好序的了。然后将这些有序的子元素进行合并。

合并的过程就是 对 两个已经排好序的子序列,先选取两个子序列中最小的元素进行比较,选取两个元素中最小的那个子序列并将其从子序列中

去掉添加到最终的结果集中,直到两个子序列归并完成。

代码如下:

#!/usr/bin/python import sys  def merge(nums,first,mIDdle,last):   ''''' merge '''   # 切片边界,左闭右开并且是了0为开始   lnums = nums[first:mIDdle+1]   rnums = nums[mIDdle+1:last+1]   lnums.append(sys.maxint)   rnums.append(sys.maxint)   l = 0   r = 0   for i in range(first,last+1):     if lnums[l] < rnums[r]:       nums[i] = lnums[l]       l+=1     else:       nums[i] = rnums[r]       r+=1 def merge_sort(nums,last):   ''''' merge sort  merge_sort函数中传递的是下标,不是元素个数  '''   if first < last:     mIDdle = (first + last)/2     merge_sort(nums,mIDdle)     merge_sort(nums,mIDdle+1,last)     merge(nums,last)  if __name__ == '__main__':   nums = [10,8,4,-1,2,6,7,3]   print 'nums is:',nums   merge_sort(nums,7)   print 'merge sort:',nums

稳定,时间复杂度 O(nlog n)

插入排序

代码如下:

#!/usr/bin/python importsys  definsert_sort(a):   ''''' 插入排序  有一个已经有序的数据序列,要求在这个已经排好的数据序列中插入一个数,  但要求插入后此数据序列仍然有序。刚开始 一个元素显然有序,然后插入一  个元素到适当位置,然后再插入第三个元素,依次类推  '''   a_len = len(a)   if a_len = 0 and a[j] > key:       a[j+1] = a[j]       j-=1     a[j+1] = key   return a  if __name__ == '__main__':   nums = [10,nums   insert_sort(nums)   print 'insert sort:',nums

稳定,时间复杂度 O(n^2)

交换两个元素的值python中你可以这么写:a,b = b,a,其实这是因为赋值符号的左右两边都是元组

(这里需要强调的是,在python中,元组其实是由逗号“,”来界定的,而不是括号)。

选择排序

选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到

排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所

有元素均排序完毕。

import sys def select_sort(a):   ''''' 选择排序   每一趟从待排序的数据元素中选出最小(或最大)的一个元素,  顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。  选择排序是不稳定的排序方法。  '''   a_len=len(a)   for i in range(a_len):#在0-n-1上依次选择相应大小的元素     min_index = i#记录最小元素的下标     for j in range(i+1,a_len):#查找最小值       if(a[j]<a[min_index]):         min_index=j     if min_index != i:#找到最小元素进行交换       a[i],a[min_index] = a[min_index],a[i]  if __name__ == '__main__':   A = [10,-3,5,1,3,7]    print 'Before sort:',A    select_sort(A)    print 'After sort:',A

不稳定,时间复杂度 O(n^2)

希尔排序

希尔排序,也称递减增量排序算法,希尔排序是非稳定排序算法。该方法又称缩小增量排序,因DL.Shell于1959年提出而得名。

先取一个小于n的整数d1作为第一个增量,把文件的全部记录分成d1个组。所有距离为d1的倍数的记录放在同一个组中。先在各组内进行排序;

然后,取第二个增量d2

import sys def shell_sort(a):   ''''' shell排序   '''   a_len=len(a)   gap=a_len/2#增量   while gap>0:     for i in range(a_len):#对同一个组进行选择排序       m=i       j=i+1       while j<a_len:         if a[j]<a[m]:           m=j         j+=gap#j增加gap       if m!=i:         a[m],a[i]=a[i],a[m]     gap/=2  if __name__ == '__main__':   A = [10,A    shell_sort(A)    print 'After sort:',A

不稳定,时间复杂度 平均时间 O(nlogn) 最差时间O(n^s)1

堆排序 ( Heap Sort )

“堆”的定义:在起始索引为 0 的“堆”中:

节点 i 的右子节点在位置 2 * i + 24) 节点 i 的父节点在位置 floor( (i C 1) / 2 )   : 注 floor 表示“取整” *** 作

堆的特性:

每个节点的键值一定总是大于(或小于)它的父节点

“最大堆”:

“堆”的根节点保存的是键值最大的节点。即“堆”中每个节点的键值都总是大于它的子节点。

上移,下移 :

当某节点的键值大于它的父节点时,这时我们就要进行“上移” *** 作,即我们把该节点移动到它的父节点的位置,而让它的父节点到它的位置上,然后我们继续判断该节点,直到该节点不再大于它的父节点为止才停止“上移”。

现在我们再来了解一下“下移” *** 作。当我们把某节点的键值改小了之后,我们就要对其进行“下移” *** 作。

方法:

我们首先建立一个最大堆(时间复杂度O(n)),然后每次我们只需要把根节点与最后一个位置的节点交换,然后把最后一个位置排除之外,然后把交换后根节点的堆进行调整(时间复杂度 O(lgn) ),即对根节点进行“下移” *** 作即可。 堆排序的总的时间复杂度为O(nlgn).

代码如下:

#!/usr/bin env python  # 数组编号从 0开始 def left(i):   return 2*i +1 def right(i):   return 2*i+2  #保持最大堆性质 使以i为根的子树成为最大堆 def max_heAPIfy(A,i,heap_size):   if heap_size <= 0:     return   l = left(i)   r = right(i)   largest = i # 选出子节点中较大的节点   if l A[largest]:     largest = l   if r A[largest]:     largest = r   if i != largest :#说明当前节点不是最大的,下移     A[i],A[largest] = A[largest],A[i] #交换     max_heAPIfy(A,largest,heap_size)#继续追踪下移的点   #print A # 建堆  def bulID_max_heap(A):   heap_size = len(A)   if heap_size >1:     node = heap_size/2 -1     while node >= 0:      max_heAPIfy(A,node,heap_size)      node -=1  # 堆排序 下标从0开始 def heap_sort(A):   bulID_max_heap(A)   heap_size = len(A)   i = heap_size - 1   while i > 0 :     A[0],A[i] = A[i],A[0] # 堆中的最大值存入数组适当的位置,并且进行交换     heap_size -=1 # heap 大小 递减 1     i -= 1 # 存放堆中最大值的下标递减 1     max_heAPIfy(A,heap_size)  if __name__ == '__main__' :    A = [10,7]   print 'Before sort:',A   heap_sort(A)   print 'After sort:',A

不稳定,时间复杂度 O(nlog n)

快速排序

快速排序算法和合并排序算法一样,也是基于分治模式。对子数组A[p…r]快速排序的分治过程的三个步骤为:

分解:把数组A[p…r]分为A[p…q-1]与A[q+1…r]两部分,其中A[p…q-1]中的每个元素都小于等于A[q]而A[q+1…r]中的每个元素都大于等于A[q];

解决:通过递归调用快速排序,对子数组A[p…q-1]和A[q+1…r]进行排序;

合并:因为两个子数组是就地排序的,所以不需要额外的 *** 作。

对于划分partition 每一轮迭代的开始,x=A[r],对于任何数组下标k,有:

1) 如果p≤k≤i,则A[k]≤x。

2) 如果i+1≤k≤j-1,则A[k]>x。

3) 如果k=r,则A[k]=x。

代码如下:

#!/usr/bin/env python # 快速排序 '''''划分 使满足 以A[r]为基准对数组进行一个划分,比A[r]小的放在左边,  比A[r]大的放在右边快速排序的分治partition过程有两种方法,一种是上面所述的两个指针索引一前一后逐步向后扫描的方法,另一种方法是两个指针从首位向中间扫描的方法。''' #p,r 是数组A的下标 def partition1(A,p,r):   '''''   方法一,两个指针索引一前一后逐步向后扫描的方法  '''   x = A[r]   i = p-1   j = p   while j < r:     if A[j] < x:       i +=1       A[i],A[j] = A[j],A[i]     j += 1   A[i+1],A[r] = A[r],A[i+1]   return i+1  def partition2(A,r):   '''''  两个指针从首尾向中间扫描的方法  '''   i = p   j = r   x = A[p]   while i = x and i < j:       j -=1     A[i] = A[j]     while A[i]<=x and i < j:       i +=1     A[j] = A[i]   A[i] = x   return i  # quick sort def quick_sort(A,r):   '''''    快速排序的最差时间复杂度为O(n2),平时时间复杂度为O(nlgn)  '''   if p < r:     q = partition2(A,r)     quick_sort(A,q-1)     quick_sort(A,q+1,r)  if __name__ == '__main__':    A = [5,-4,11,2]   print 'Before sort:',A   quick_sort(A,7)   print 'After sort:',A

不稳定,时间复杂度 最理想 O(nlogn)最差时间O(n^2)

说下python中的序列:

列表、元组和字符串都是序列,但是序列是什么,它们为什么如此特别呢?序列的两个主要特点是索引 *** 作符和切片 *** 作符。索引 *** 作符让我们可以从序列中抓取一个特定项目。切片 *** 作符让我们能够获取序列的一个切片,即一部分序列,如:a = [‘aa','bb','cc'],print a[0] 为索引 *** 作,print a[0:2]为切片 *** 作。

  希望通过此文掌握Python 算法排序的知识,谢谢大家对本站的支持!

总结

以上是内存溢出为你收集整理的python 排序算法总结及实例详解全部内容,希望文章能够帮你解决python 排序算法总结及实例详解所遇到的程序开发问题。

如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/1203618.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-06-04
下一篇 2022-06-04

发表评论

登录后才能评论

评论列表(0条)

保存