激活函数与损失函数

激活函数与损失函数,第1张

线性模型的表达能力不够,激活函数增加神经网络模型的非线性,提升神经网络模型表达能力(数据往往线性不可分 )。

(1)sigmoid函数:

sigmoid函数(Logistic 函数),隐层神经元输出,取值范围(0,1),可以将一个实数映射到(0,1)的区间,可以做二分类。

缺点:

(3)softmax函数:

多分类神经网络输出:

(4)Leaky ReLU函数(PReLU):

(4)ELU函数:

(4)MaxOut函数:

Maxout是深度学习网络中一层网络,同池化层、卷积层,可以把maxout 看成网络的激活函数层,假设网络某一层的输入特征向量为:X=(x1,x2,……xd),输入是d个神经元。Maxout隐藏层每个神经元的计算公式如下:

其中,C表示代价,x表示样本,y表示实际值,a表示输出值,n表示样本的总数。

一个样本为例:

梯度下降算法:

不改变激活函数,二次代价函数改为交叉熵代价函数:

x表示样本,n表示样本的总数。计算参数w的梯度:

b的梯度:

第0节、引例

本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在http://enwikipediaorg/wiki/Iris_flower_data_set 找到。这里简要介绍一下Iris数据集:

有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。

  一种解决方法是用已有的数据训练一个神经网络用作分类器。

  如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。

第一节、神经网络基本原理

1 人工神经元( Artificial Neuron )模型

人工神经元是神经网络的基本元素,其原理可以用下图表示:

图1 人工神经元模型

图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为:

  图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为:

  若用X表示输入向量,用W表示权重向量,即:

X = [ x0 , x1 , x2 , , xn ]

  则神经元的输出可以表示为向量相乘的形式:

若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net为负,则称神经元处于抑制状态。

图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。

2 常用激活函数

激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。

(1) 线性函数 ( Liner Function )

(2) 斜面函数 ( Ramp Function )

(3) 阈值函数 ( Threshold Function )

以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函数。

(4) S形函数 ( Sigmoid Function )

  该函数的导函数:

(5) 双极S形函数

  该函数的导函数:

  S形函数与双极S形函数的图像如下:

图3 S形函数与双极S形函数图像

  双极S形函数与S形函数主要区别在于函数的值域,双极S形函数值域是(-1,1),而S形函数值域是(0,1)。

  由于S形函数与双极S形函数都是可导的(导函数是连续函数),因此适合用在BP神经网络中。(BP算法要求激活函数可导)

具体http://blogcsdnnet/gongxq0124/article/details/7681000/

我们从下面四点认识人工神经网络(ANN: Artificial Neutral Network):神经元结构、神经元的激活函数、神经网络拓扑结构、神经网络选择权值和学习算法。

1 神经元:

我们先来看一组对比图就能了解是怎样从生物神经元建模为人工神经元。

下面分别讲述:

生物神经元的组成包括细胞体、树突、轴突、突触。树突可以看作输入端,接收从其他细胞传递过来的电信号;轴突可以看作输出端,传递电荷给其他细胞;突触可以看作I/O接口,连接神经元,单个神经元可以和上千个神经元连接。细胞体内有膜电位,从外界传递过来的电流使膜电位发生变化,并且不断累加,当膜电位升高到超过一个阈值时,神经元被激活,产生一个脉冲,传递到下一个神经元。

为了更形象理解神经元传递信号过程,把一个神经元比作一个水桶。水桶下侧连着多根水管(树突),水管既可以把桶里的水排出去(抑制性),又可以将其他水桶的水输进来(兴奋性),水管的粗细不同,对桶中水的影响程度不同(权重),水管对水桶水位(膜电位)的改变就是水桶内水位的改变,当桶中水达到一定高度时,就能通过另一条管道(轴突)排出去。

按照这个原理,科学家提出了M-P模型(取自两个提出者的姓名首字母),M-P模型是对生物神经元的建模,作为人工神经网络中的一个神经元。

由MP模型的示意图,我们可以看到与生物神经元的相似之处,x_i表示多个输入,W_ij表示每个输入的权值,其正负模拟了生物神经元中突出的兴奋和抑制;sigma表示将全部输入信号进行累加整合,f为激活函数,O为输出。下图可以看到生物神经元和MP模型的类比:

往后诞生的各种神经元模型都是由MP模型演变过来。

2 激活函数

激活函数可以看作滤波器,接收外界各种各样的信号,通过调整函数,输出期望值。ANN通常采用三类激活函数:阈值函数、分段函数、双极性连续函数(sigmoid,tanh):

3 学习算法

神经网络的学习也称为训练,通过神经网络所在环境的刺激作用调整神经网络的自由参数(如连接权值),使神经网络以一种新的方式对外部环境做出反应的一个过程。每个神经网络都有一个激活函数y=f(x),训练过程就是通过给定的海量x数据和y数据,拟合出激活函数f。学习过程分为有导师学习和无导师学习,有导师学习是给定期望输出,通过对权值的调整使实际输出逼近期望输出;无导师学习给定表示方法质量的测量尺度,根据该尺度来优化参数。常见的有Hebb学习、纠错学习、基于记忆学习、随机学习、竞争学习。

4 神经网络拓扑结构

常见的拓扑结构有单层前向网络、多层前向网络、反馈网络,随机神经网络、竞争神经网络。

5 神经网络的发展

(不能贴公式不好解释啊 -_-!)sigma是误差信号,yita是学习率,net是输入之和,V是输入层到隐含层的权重矩阵,W是隐含层到输出层的权重矩阵。

之后还有几种

随着计算机硬件计算能力越来越强,用来训练的数据越来越多,神经网络变得越来越复杂。在人工智能领域常听到DNN(深度神经网络)、CNN(卷积神经网络)、RNN(递归神经网络)。其中,DNN是总称,指层数非常多的网络,通常有二十几层,具体可以是CNN或RNN等网络结构。

参考资料

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/12155991.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存