三角函数都有哪些符号?

三角函数都有哪些符号?,第1张

三角函数符号有sin、cos、tan、cot、sec、csc等等。

三角函数复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。

有六种基本函数:函数名:正弦、余弦、正切、余切、正割、余割。

符号:sin、cos、tan、cot、sec、csc。

正弦函数sin(A)=a/c。

余弦函数cos(A)=b/c。

正切函数tan(A)=a/b。

余切函数cot(A)=b/a。

其中a为对边,b为邻边,c为斜边。

符号:

毛罗利科最早于1558年已采用三角函数符号(Signs for trigonometric functions)。

而首个真正使用简化符号表示三角线的人是T芬克。他于1583年,创立以“tangent”(正切)及“secant”(正割)表示相应之概念,其后他分别以符号“sin”,“tan”,“sec”,“sin com”,“tan com”,“sec com”表示正弦,正切,正割,余弦,余切,余割,首三个符号与现代之符号相同。

正弦可以取虚数,其它的应该也可以

请参考狭义相对论

http://wwwwikilibcom/wikititle=%E7%8B%AD%E4%B9%89%E7%9B%B8%E5%AF%B9%E8%AE%BA&variant=zh-cn

不过你的提问太幼稚 实数就是复数的一类 上课不听讲就来这提问 或者你们老师教你复数以外的数了

三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。

由于三角函数的周期性,它并不具有单值函数意义上的反函数。

三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。

基本初等内容

它有六种基本函数(初等基本表示):

函数名

正弦

余弦

正切

余切

正割

余割

正弦函数

sinθ=y

余弦函数

cosθ=x

正切函数

tanθ=y/x

余切函数

cotθ=x/y

正割函数

secθ=r/x

余割函数

cscθ=r/y

以及两个不常用,已趋于被淘汰的函数:

正矢函数

versinθ

=1-cosθ

余矢函数

vercosθ

=1-sinθ

同角三角函数间的基本关系式:

·平方关系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

·积的关系:

sinα=tanαcosα

cosα=cotαsinα

tanα=sinαsecα

cotα=cosαcscα

secα=tanαcscα

cscα=secαcotα

·倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

三角函数恒等变形公式:

·两角和与差的三角函数:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·辅助角公式:

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

·倍角公式:

sin(2α)=2sinα·cosα

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

·三倍角公式:

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

·半角公式:

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

·万能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

·积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·其他:

sinα+sin(α+2π/n)+sin(α+2π2/n)+sin(α+2π3/n)+……+sin[α+2π(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π2/n)+cos(α+2π3/n)+……+cos[α+2π(n-1)/n]=0

以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

部分高等内容

·高等代数中三角函数的指数表示(由泰勒级数易得):

sinx=[e^(ix)-e^(-ix)]/2

cosx=[e^(ix)+e^(-ix)]/2

tanx=[e^(ix)-e^(-ix)]/[^(ix)+e^(-ix)]

泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…

此时三角函数定义域已推广至整个复数集。

·三角函数作为微分方程的解:

对于微分方程组

y=-y'';y=y'''',有通解Q,可证明

Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。

补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。

·特殊三角函数值

a

30`

45`

60`

90`

sina

1/2

√2/2

√3/2

1

cosa

√3/2

√2/2

1/2

0

tga

√3/3

1

√3

不存在

ctga

√3

1

√3/3

0

将复数化为三角表示式和指数表示式是:复数z=a+bi有三角表示式z=rcosθ+irsinθ,可以化为指数表示式z=rexp(iθ)。

exp()为自然对数的底e的指数函数。即:exp(iθ)=cosθ+isinθ。 证明可以通过幂级数展开或对函数两端积分得到,是复变函数的基本公式。

两角和公式

sin(A+B) = sinAcosB+cosAsinB 

sin(A-B) = sinAcosB-cosAsinB 

cos(A+B) = cosAcosB-sinAsinB 

cos(A-B) = cosAcosB+sinAsinB 

tan(A+B) = (tanA+tanB)/(1-tanAtanB) 

tan(A-B) = (tanA-tanB)/(1+tanAtanB) 

利用复数的几何表示法

复数又可以用坐标平面上的向量来表示,两个复数相加可以按照向量加法的平行四边形法则来进行,一个复数乘以i(或-i)相当于表示此复数的向量逆(或顺)时针旋转90。这就使得物理上的许多向量:力、速度、加速度等等,都可以借助于复数来进行计算,使复数成为物理学和其他自然科学的重要工具。

-复数平面

在数学中,三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。

三角函数在数学中属于一类重要的周期函数也是初等函数里的超越函数的一类函数。它们本质上是任意角的集合与一个比值的集合的变量之间的映射。由于三角函数具有周期性,所以并不具有单射函数(亦称为单调函数)意义上的反函数。三角函数在复数中有重要的应用,在物理学中也是常用的工具。例如在天文测量、大地测量、工程测量、机械制造、力学、光学、电学、地球物理学及图像处理等众多学科和领域中都有广泛的应用。

三角函数一般用于计算三角形(通常为直角三角形)中未知长度的边和未知的角度,在导航系统,工程学以及物理学方面都有广泛的用途。 其在基本物理中的一个常见用途是将矢量转换到笛卡尔坐标系中。现代比较常用的三角函数有6个,其中sin和cos还常用于模拟周期函数现象,比如说声波和光波,谐振子的位置和速度,光照强度和白昼长度,过去一年中的平均气温变化等等。

非零复数Z=a+bi的辐角是以x轴的正半轴为始边,以复数Z对应的向量OZ所在的射线(起点是O)为终边的角θ。Z的辐角有无限多个值,且这些值相差2π的整数倍。把适合于-π<θ<=π的辐角θ 的值叫做辐角主值,其值是唯一的。

用三角函数表示:非零复数Z=a+bi的辐角θ=arctan(b/a),( θ 在Z所在象限)

例子:求复数Z=4-4i的辐角主值。

解:已知复数Z的实部a=4,虚部b=-4,所以Z在第四象限,

其辐角 θ= arctan(b/a)=arctan(-1)=(-π/4)+ 2kπ,(k

为实数)

因为-π<-π/4< π,所以- π/4是复数Z的辐角主值。

(注:tan θ=b/a=-1, θ=(3π/4)+2kπ在第二象限,舍去)

学得向量,也可以用向量法求得:

A=1+0i,向量OA=(1,0),OZ=(a,b)

|OA|=1,|OZ|^2=a^2+b^2,

OA·OZ=(1,0)·(a,b)=a

由公式OA·OZ=|OA|·|OZ|·cosθ求得 θ,

注意θ是两向量的夹角,其取值0<= θ<=π,

根据Z所在象限判断其辐角主值是 θ还是 θ-π 。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/12156179.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存