伽马函数(12)的值是如何算出的

伽马函数(12)的值是如何算出的,第1张

伽马函数(1/2)的值可以根据余元公式算出,余元公式的定义是对0-1之间的数,有

将1/2代入得到伽玛函数(1/2)的值是Π^(1/2)。

扩展资料

余元公式是求解伽玛函数的重要公式,对于数值在0-1之间的实数,可以方便简单地求解函数的值,对于研究伽玛函数的性质有重要的作用。由此可以推出以下重要的概率公式:

伽玛函数也叫欧拉第二积分,是阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分。可以用来快速计算同伽马函数形式相类似的积分。

伽马函数可以当成是阶乘在实数集上的延拓,对于正整数n,具有如下性质:

参考资料-伽玛函数

Γ(x)称为伽玛函数,它是用一个积分式定义的,不是初等函数。

伽马函数有性质:Γ(x+1)=xΓ(x),Γ(0)=1,Γ(1/2)=√π,对正整数n,有Γ(n+1)=n!

例如:

(a-1)]/[1 X}dx如何Γ(x 1)=xΓ(x),Γ(0)=1

^Γ(1/2)=int(e^x/sqrt(x),x=0+无穷)

(就是x^(1/2-1)e^x从0到正无穷的积分)

换元积分,令sqrt(x)=t,则

e^x/sqrt(x)=e^(t^2)/t

x=t^2,dx=2tdt

由x的范围可知t的范围也是0到正无穷

所以

Γ(1/2)=int(e^(t^2)2t/t,t=0+无穷)

=int(2e^(t^2),t=0+无穷)

扩展资料:

对1/(1-x)进行离散与连续展开,有

1/(1-x)=

∑xk

=∫e^-(1-x)tdt

=∫e-t∑(xt)k/k!dt

=∑(∫e-ttkdt)xk/k!

对比系数有k!=∫e-ttkdt

x在收敛域(-1,1)内,求和积分均在0到+∞

最后的积分中我们可以让k取任意实数,这样我们就把阶乘延拓到实数集中了

-伽马函数

具体见:

是阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分。可以用来快速计算同伽马函数形式相类似的积分。

扩展资料:

伽玛函数的定义(或叫第二类欧拉积分):

Γ(x)=积分:e^(-t)*t^(x-1)dt

(e的负t次方乘以的(x-1)次方),积分区间是0到正无穷,x>0

而可以把x延拓到复平面上,除了0和负整数的点.这里,利用Γ函数在x>0的区间上的性质Γ(x+1)=xΓ(x)

,可以定义:

Γ(z)=Γ(z+n+1)/z(z+1)(z+2)...(z+n)

在正整数的范围内,由于Γ(x+1)=xΓ(x)

关系,Γ(n+1)=n!

这样,因为z可以取非整数,我们就用伽玛函数延拓了阶乘的定义.定义x!=Γ(x+1),这里x可以取非整数。

参考资料:

-伽玛函数

Γ(x)称为伽马函数,它是用一个积分式定义的,不是初等函数。伽马函数有性质:Γ(x+1)=xΓ(x),Γ(0)=1,Γ(1/2)=√π,对正整数n,有Γ(n+1)=n! 11。

表达式:

Γ(a)=∫{0积到无穷大}。

[x^(a-1)][e^(-x)]dx。

简介

Gamma 函数从它诞生开始就被许多数学家进行研究,包括高斯、勒让德、魏尔斯特拉斯、刘维尔等等。这个函数在现代数学分析中被深入研究,在概率论中也是无处不在,很多统计分布都和这个函数相关。

Gamma 函数作为阶乘的推广,首先它也有和 Stirling 公式类似的一个结论:即当x取的数越大,Gamma 函数就越趋向于 Stirling 公式,所以当x足够大时,可以用Stirling 公式来计算Gamma 函数值。

Γ(x)称为伽马函数,它是用一个积分式定义的,不是初等函数。伽马函数有性质:Γ(x+1)=xΓ(x),Γ(0)=1,Γ(1/2)=√π,对正整数n,有Γ(n+1)=n! 11。

表达式:

Γ(a)=∫{0积到无穷大}。

[x^(a-1)][e^(-x)]dx。

介绍

伽玛函数是阶乘函数在实数与复数上扩展的一类函数,该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。

与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分,可以用来快速计算同伽马函数形式相类似的积分。伽玛函数作为阶乘的延拓,是定义在复数范围内的亚纯函数。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/12163653.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存