伽马函数(1/2)的值可以根据余元公式算出,余元公式的定义是对0-1之间的数,有
将1/2代入得到伽玛函数(1/2)的值是Π^(1/2)。
扩展资料
余元公式是求解伽玛函数的重要公式,对于数值在0-1之间的实数,可以方便简单地求解函数的值,对于研究伽玛函数的性质有重要的作用。由此可以推出以下重要的概率公式:
伽玛函数也叫欧拉第二积分,是阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分。可以用来快速计算同伽马函数形式相类似的积分。
伽马函数可以当成是阶乘在实数集上的延拓,对于正整数n,具有如下性质:
参考资料-伽玛函数
Γ(x)称为伽玛函数,它是用一个积分式定义的,不是初等函数。
伽马函数有性质:Γ(x+1)=xΓ(x),Γ(0)=1,Γ(1/2)=√π,对正整数n,有Γ(n+1)=n!
例如:
(a-1)]/[1 X}dx如何Γ(x 1)=xΓ(x),Γ(0)=1
^Γ(1/2)=int(e^x/sqrt(x),x=0+无穷)
(就是x^(1/2-1)e^x从0到正无穷的积分)
换元积分,令sqrt(x)=t,则
e^x/sqrt(x)=e^(t^2)/t
x=t^2,dx=2tdt
由x的范围可知t的范围也是0到正无穷
所以
Γ(1/2)=int(e^(t^2)2t/t,t=0+无穷)
=int(2e^(t^2),t=0+无穷)
扩展资料:
对1/(1-x)进行离散与连续展开,有
1/(1-x)=
∑xk
=∫e^-(1-x)tdt
=∫e-t∑(xt)k/k!dt
=∑(∫e-ttkdt)xk/k!
对比系数有k!=∫e-ttkdt
x在收敛域(-1,1)内,求和积分均在0到+∞
最后的积分中我们可以让k取任意实数,这样我们就把阶乘延拓到实数集中了
-伽马函数
具体见:
是阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分。可以用来快速计算同伽马函数形式相类似的积分。
扩展资料:
伽玛函数的定义(或叫第二类欧拉积分):
Γ(x)=积分:e^(-t)*t^(x-1)dt
(e的负t次方乘以的(x-1)次方),积分区间是0到正无穷,x>0
而可以把x延拓到复平面上,除了0和负整数的点.这里,利用Γ函数在x>0的区间上的性质Γ(x+1)=xΓ(x)
,可以定义:
Γ(z)=Γ(z+n+1)/z(z+1)(z+2)...(z+n)
在正整数的范围内,由于Γ(x+1)=xΓ(x)
关系,Γ(n+1)=n!
这样,因为z可以取非整数,我们就用伽玛函数延拓了阶乘的定义.定义x!=Γ(x+1),这里x可以取非整数。
参考资料:
Γ(x)称为伽马函数,它是用一个积分式定义的,不是初等函数。伽马函数有性质:Γ(x+1)=xΓ(x),Γ(0)=1,Γ(1/2)=√π,对正整数n,有Γ(n+1)=n! 11。
表达式:
Γ(a)=∫{0积到无穷大}。
[x^(a-1)][e^(-x)]dx。
简介
Gamma 函数从它诞生开始就被许多数学家进行研究,包括高斯、勒让德、魏尔斯特拉斯、刘维尔等等。这个函数在现代数学分析中被深入研究,在概率论中也是无处不在,很多统计分布都和这个函数相关。
Gamma 函数作为阶乘的推广,首先它也有和 Stirling 公式类似的一个结论:即当x取的数越大,Gamma 函数就越趋向于 Stirling 公式,所以当x足够大时,可以用Stirling 公式来计算Gamma 函数值。
Γ(x)称为伽马函数,它是用一个积分式定义的,不是初等函数。伽马函数有性质:Γ(x+1)=xΓ(x),Γ(0)=1,Γ(1/2)=√π,对正整数n,有Γ(n+1)=n! 11。
表达式:
Γ(a)=∫{0积到无穷大}。
[x^(a-1)][e^(-x)]dx。
介绍
伽玛函数是阶乘函数在实数与复数上扩展的一类函数,该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。
与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分,可以用来快速计算同伽马函数形式相类似的积分。伽玛函数作为阶乘的延拓,是定义在复数范围内的亚纯函数。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)