函数的凹凸性是向上凸还是向下凸?

函数的凹凸性是向上凸还是向下凸?,第1张

是的。向上凸就是向下凹。向下凸就是向上凹。一般地,曲线向上凸叫凸函数(二阶导数小于0),向上凹叫凹函数(二阶导数大于0)。

判定方法可利用定义法、已知结论法以及函数的二阶导数,对于实数集上的凸函数,一般的判别方法是求它的二阶导数,如果其二阶导数在区间上非负,就称为凸函数。如果其二阶导数在区间上恒大于0,就称为严格凸函数。

如果一个可微函数f它的导数f'在某区间是单调上升的,也就是二阶导数若存在,则在此区间,二阶导数是大于零的,f就是凹的;即一个凹函数拥有一个下跌的斜率(当中下跌只是代表非上升而不是严谨的下跌,也代表这容许零斜率的存在。)

如果一个二次可微的函数f,它的二阶导数f'(x)是正值(或者说它有一个正值的加速度),那么它的图像是凹的;如果二阶导数f'(x)是负值,图像就会是凸的。当中如果某点转变了图像的凹凸性,这就是一个拐点。

扩展资料:

凸函数的任何极小值也是最小值。严格凸函数最多有一个最小值。

对于凸函数f,水平子集{x | f(x) < a}和{x | f(x) ≤ a}(a ∈ R)是凸集。然而,水平子集是凸集的函数不一定是凸函数;这样的函数称为拟凸函数。

延森不等式对于每一个凸函数f都成立。如果X是一个随机变量,在f的定义域内取值,那么(在这里,E表示数学期望。)

凸函数还有一个重要的性质:对于凸函数来说,局部最小值就是全局最小值。

——凸函数

——凹函数

1、已知函数表达式,但不容易做出图形是可以利用其二阶导数符号来判定函数的凹凸性

y''>0是凹函数

y''<0是凸函数

2、如果可以从函数的表达式入手做出其草图,也可从图形中判断其凹凸性,开口向下为凸,开口向上为凹。

3、利用曲线与曲线上切线位置关系也可判断函数的凹凸性:切线总是位于曲线上方,则曲线为凸;切线总位于曲线下方,则曲线为凹

二阶导数>0,可得凹区间,二阶导数<0,可得凸区间。

f(λx1+(1-λ)x2)<=λf(x1)+(1-λ)f(x2) , 即V型,为“凸向原点”,或“下凸”(也可说上凹),(有的简称凸有的简称凹)

f(λx1+(1-λ)x2)>=λf(x1)+(1-λ)f(x2) , 即A型,为“凹向原点”,或“上凸”(下凹),(同样有的简称凹有的简称凸)

二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数yˊ=fˊ(x)仍然是x的函数,则y′′=f′′(x)的导数叫做函数y=f(x)的二阶导数。在图形上,它主要表现函数的凹凸性。

扩展资料:

一般地,把满足[f(x1)+f(x2)]/2>f[(x1+x2)/2]的区间称为函数f(x)的凹区间;反之为凸区间;凹凸性改变的点叫做拐点。

通常凹凸性由二阶导数确定:满足f''(x)>0的区间为f(x)的凹区间,反之为凸区间;

例:求y=x^3-x^4的凸凹区间和拐点。

解:y'=3x²-4x³,y''=6x-12x²;

y''>0,得:0<x<1/2;

所以,凹区间为(0,1/2);凸区间为(-∞,0),(1/2,+∞);拐点为(0,0),(1/2,1/16);

-凹区间

函数的凹凸性的定义:

设函数f(x)在区间I上有定义,若对I中的任意两点x₁和x₂,和任意λ∈(0,1),都有:

f(λx₁+(1-λ)x₂)>=λf(x₁)+(1-λ)f(x₂)。

则称f为I上的凸函数,若不等号严格成立,即“>”号成立,则称f(x)在I上是严格凸函数。

同理,如果">=“换成“<=”就是凹函数。类似也有严格凹函数。

凹凸函数的判定方法:

1、在图像上任取两点A、B连接,若函数图像在两点间的部分均在直线下方,则把该函数在[A,B]之间的部分定义为凹函数。反正为凸函数。

2、求函数的二阶导函数,f”(X),若二阶导函数在[A,B]之间,则:

(1)若 f”(X) ≥ 0,原函数为凹函数。

(2)若 f”(X) ≤ 0,原函数为凸函数。

确定曲线y=f(x)的凹凸区间和拐点的步骤:

1、确定函数y=f(x)的定义域。

2、求出在二阶导数f"(x)。

3、求出使二阶导数为零的点和使二阶导数不存在的点。

4、判断或列表判断,确定出曲线凹凸区间和拐点。

凸函数的一阶导数是减函数,因此其二阶导数小于0;

凹函数的一阶导数是增函数,因此其二阶导数大于0;

当遇到需要知道二阶导数的正负时,图像的凹凸性就显得很重要。

比如运动函数s=f(t),当只知道它的图像而不知道它的解析式子时,要判断其加速度的变化情况时,其图像的凹凸性就显得很重要。

看导数,代数上,函数一阶导数为负,二阶导数为正(或者一阶正,二阶负),便是凸的,一阶与二阶同号为凹。函数在凹凸性发生改变的点称为拐点,拐点的二阶导数为0或不存在二阶导数

函数凹凸性的定义

1、凹函数定义:设函数y =f (x ) 在区间I 上连续,对∀x 1, x 2∈I ,若恒有f (则称y =f (x ) 的图象是凹的,函数y =f (x ) 为凹函数;

2、凸函数定义:设函数y =f (x ) 在区间I 上连续,对∀x 1, x 2∈I ,若恒有f (则称y =f (x ) 的图象是凸的,函数y =f (x ) 为凸函数

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/12163943.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存