求概率密度

求概率密度,第1张

条件概率密度=联合概率密度/边缘概率密度X的边缘密度:对y进行积分,被积函数是联合密度Y的边缘密度:对x进行积分,被积函数是联合密度积分区域的话,可以画出图来,就比较明了了。

对于连续型的随机变量,在一点处的取值概率为0,但是当这个问题出现在求条件概率密度时,思考的方向就变了,不能单纯的应用条件概率公式解题。

对于第三问如果你用条件概率公式

那么分母P(x=1/3),我的第一想法是这个概率为0啊,这样还怎么解题?此处出现重大认识上的误区!正确的做法应该是你求出x的边缘概率密度,然后看x=1/3处的结果,是多少就是多少,所以对于这道题而言,求出x的边缘概率密度是必须的!

扩展资料:

定义

类条件概率密度函数

是指在已知某类别的特征空间中,出现特征值X的概率密度,指第类样品其属性X是如何分布的。假定只用其一个特征进行分类,即n=1,并已知这两类的类条件概率密度函数分布,如图1所示,概率密度函数

是正常药品的属性分布,概率密度函数是异常药品的属性分布。例如,全世界华人占地球上人口总数的20%,但各个国家华人所占当地人口比例是不同的,类条件概率密度函数

是指条件下出现X的概率密度,在这里指第

类样品其属性X是如何分布的。在工程上的许多问题中,统计数据往往满足正态分布规律。正态分布简单、分析方便、参量少,是一种适宜的数学模型。如果采用正态密度函数作为类条件概率密度的函数形式,则函数内的参数,如期望和方差是未知的。那么问题就变成了如何利用大量样品对这些参数进行估计,只要估计出这些参数,类条件概率密度函数

也就确定了。

在大多数情况下,类条件密度可以采用多维变量的正态密度函数来模拟。

已知概率密度函数,它的期望:

已知概率密度函数,它的方差:

扩展资料:

连续型的随机变量取值在任意一点的概率都是0。作为推论,连续型随机变量在区间上取值的概率与这个区间是开区间还是闭区间无关。要注意的是,概率P{x=a}=0,但{X=a}并不是不可能事件。

由于随机变量X的取值 只取决于概率密度函数的积分,所以概率密度函数在个别点上的取值并不会影响随机变量的表现。

如果一个函数和X的概率密度函数取值不同的点只有有限个、可数无限个或者相对于整个实数轴来说测度为0(是一个零测集),那么这个函数也可以是X的概率密度函数。

概率密度的数学定义

  对于随机变量X,若存在一个非负可积函数p(x)(﹣∞ < x < ﹢∞),使得对于任意实数a, b(a < b),都有(公式如右图)  ,则称p(x)为X的概率密度。

     连续型随机变量往往通过其概率密度函数进行直观地描述,连续型随机变量的概率密度函数f(x)具有如下性质:

这里指的是一维连续随机变量,多维连续变量也类似。

       随机数据的概率密度函数:表示瞬时幅值落在某指定范围内的概率,因此是幅值的函数。它随所取范围的幅值而变化。

  密度函数f(x) 具有下列性质:

  (1)f(x)≧0;

  (2) ∫f(x)d(x)=1;

  (3) P(a<X≦b)=∫f(x)dx

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/12178326.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存