数字信号处理实验一报告matlab乘法加法减法怎么用

数字信号处理实验一报告matlab乘法加法减法怎么用,第1张

1、尝试使用不同的数据类型和维度进行运算,例如矩阵和标量的乘法、多维数组的加减法等。

2、实现自己的矢量化函数,可以将常规的循环函数转换为矢量化形式,提高计算效率。

3、深入学习MATLAB中的向量和矩阵 *** 作函数,例如dot(点积)、cross(叉积)等,掌握更多的数学工具。

4、尝试将数字信号处理中的特定算法或模型实现为MATLAB代码,例如快速傅里叶变换(FFT)、数字滤波器设计等。

完整的程序

%写上标题

%设计低通滤波器

[N,Wc]=buttord()

%估算得到Butterworth低通滤波器的最小阶数N和3dB截止频率Wc

[a,b]=butter(N,Wc); %设计Butterworth低通滤波器

[h,f]=freqz(); %求数字低通滤波器的频率响应

figure(2); % 打开窗口2

subplot(221); %图形显示分割窗口

plot(f,abs(h)); %绘制Butterworth低通滤波器的幅频响应图

title(巴氏低通滤波器'');

grid; %绘制带网格的图像

sf=filter(a,b,s); %叠加函数S经过低通滤波器以后的新函数

subplot(222);

plot(t,sf); %绘制叠加函数S经过低通滤波器以后的时域图形

xlabel('时间 (seconds)');

ylabel('时间按幅度');

SF=fft(sf,256); %对叠加函数S经过低通滤波器以后的新函数进行256点的基—2快速傅立叶变换

w= %新信号角频率

subplot(223);

plot()); %绘制叠加函数S经过低通滤波器以后的频谱图

title('低通滤波后的频谱图');

%设计高通滤波器

[N,Wc]=buttord()

%估算得到Butterworth高通滤波器的最小阶数N和3dB截止频率Wc

[a,b]=butter(N,Wc,'high'); %设计Butterworth高通滤波器

[h,f]=freqz(); %求数字高通滤波器的频率响应

figure(3);

subplot(221);

plot()); %绘制Butterworth高通滤波器的幅频响应图

title('巴氏高通滤波器');

grid; %绘制带网格的图像

sf=filter(); %叠加函数S经过高通滤波器以后的新函数

subplot(222);

plot(t,sf); ;%绘制叠加函数S经过高通滤波器以后的时域图形

xlabel('Time(seconds)');

ylabel('Time waveform');

w; %新信号角频率

subplot(223);

plot()); %绘制叠加函数S经过高通滤波器以后的频谱图

title('高通滤波后的频谱图');

%设计带通滤波器

[N,Wc]=buttord([)

%估算得到Butterworth带通滤波器的最小阶数N和3dB截止频率Wc

[a,b]=butter(N,Wc); %设计Butterworth带通滤波器

[h,f]=freqz(); %求数字带通滤波器的频率响应

figure(4);

subplot(221);

plot(f,abs(h)); %绘制Butterworth带通滤波器的幅频响应图

title('butter bandpass filter');

grid; %绘制带网格的图像

sf=filter(a,b,s); %叠加函数S经过带通滤波器以后的新函数

subplot(222);

plot(t,sf); %绘制叠加函数S经过带通滤波器以后的时域图形

xlabel('Time(seconds)');

ylabel('Time waveform');

SF=fft(); %对叠加函数S经过带通滤波器以后的新函数进行256点的基—2快速傅立叶变换

w=( %新信号角频率

subplot(223);

plot(')); %绘制叠加函数S经过带通滤波器以后的频谱图

title('带通滤波后的频谱图');

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/12179133.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存