周期函数是什么意思?

周期函数是什么意思?,第1张

对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。

事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。

1,做变量替换令y=x+1 ,得到 f(y)= -f(y+2)

2,再一次套用这个式子,得到f(y+2)=-f(y+4)

3,两个式子结合,得到f(y)=f(y+4),所以,周期是4

关键的地方是:凑出f(x)=f(x+T),这时候T就是周期。而上面3个步骤就是往这个方向凑

扩展资料:

1 周期函数:对于函数f(x),如果存在非零常数T,使得当x取定义域D内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的 一个周期 

2最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫作函数f(x)的最小正周期 

3若函数f(x)具有周期性,且非零常数T是f(x)的一个周期, 则kT(其中k是不等于零的任意整数)也是f(x)的周期

4若数列{an}满足:对于任意的正整数n,都有

则称数列{an}是以K为周期的周期数列。

函数周期性的判定与应用

(1)判定:判断函数的周期性只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T。

(2)应用:根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期。

递归,就是在运行的过程中调用自己。

构成递归需具备的条件:

函数嵌套调用过程示例

1 子问题须与原始问题为同样的事,且更为简单;

2 不能无限制地调用本身,须有个出口,化简为非递归状况处理。

在数学和计算机科学中,递归指由一种(或多种)简单的基本情况定义的一类对象或方法,并规定其他所有情况都能被还原为其基本情况。

例如,下列为某人祖先的递归定义:

某人的双亲是他的祖先(基本情况)。某人祖先的双亲同样是某人的祖先(递归步骤)。斐波纳契数列(Fibonacci Sequence),又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21 I[1]

斐波纳契数列是典型的递归案例:

递归关系就是实体自己和自己建立关系。

Fib(0) = 1 [基本情况] Fib(1) = 1 [基本情况] 对所有n > 1的整数:Fib(n) = (Fib(n-1) + Fib(n-2)) [递归定义] 尽管有许多数学函数均可以递归表示,但在实际应用中,递归定义的高开销往往会让人望而却步。例如:

阶乘(1) = 1 [基本情况] 对所有n > 1的整数:阶乘(n) = (n 阶乘(n-1)) [递归定义] 一种便于理解的心理模型,是认为递归定义对对象的定义是按照“先前定义的”同类对象来定义的。例如:你怎样才能移动100个箱子?答案:你首先移动一个箱子,并记下它移动到的位置,然后再去解决较小的问题:你怎样才能移动99个箱子?最终,你的问题将变为怎样移动一个箱子,而这时你已经知道该怎么做的。

如此的定义在数学中十分常见。例如,集合论对自然数的正式定义是:1是一个自然数,每个自然数都有一个后继,这一个后继也是自然数。

德罗斯特效应是递归的一种视觉形式。图中女性手持的物体中有一幅她本人手持同一物体的小,进而小中还有更小的一幅她手持同一物体的,依此类推。

德罗斯特效应

又例如,我们在两面相对的镜子之间放一根正在燃烧的蜡烛,我们会从其中一面镜子里看到一根蜡烛,蜡烛后面又有一面镜子,镜子里面又有一根蜡烛……这也是递归的表现。

设宽为x,则长为2x;

那么镜子花费:2x^2120=240x^2

边框长为 2x+22x=6x。花费,6x30=180x

总花费240x^2+180x+45 = 195解之

240x^2+180x-150=0;

8x^2+6x-5=0;

得到x=05所以镜子长1米,宽05米

两个镜子对面放避免出现无数的镜子这种现象有两种;(1)两个镜子对面放两个镜子之间的距离大于你最远自己的视距就行,比率是(你最远自己的视距)比(你最远自己的视距加大于零任意数)

(2)两个镜子对面放避免出现无数的镜子这种现象你把两个镜子贴在一起,距离是零,比率是零

宇宙万物间必有因果 没有因何来果

数学是任何当代科学学科的基石。现代数据科学的几乎所有技术,包括机器学习,都有深厚的数学基础。

毫无疑问,想要成为一个顶级的数据科学家,需要在各个方面都具有优势如编程能力、一定的商业智慧、以及独特的分析能力等。但了解“引擎盖下的机械原理”总是有好处的。对算法背后的数学机制有一个深入的理解,将使你在同行中具有优势。

对于从其他行业(硬件工程、零售、化学加工工业、医药和卫生保健、商业管理等)进入数据科学领域的新人来说,这一基本数学知识尤为重要。虽然这类领域可能需要电子表格、数值计算和投影方面的经验,但数据科学所需的数学技能可能有很大的不同。

考虑web开发人员或业务分析人员。他们可能每天都要处理大量的数据和信息。数据科学应该是关于科学而不是数据。遵循这一思路,某些工具和技术就变得不可或缺。

通过探测底层动态来建模一个过程

形成假设

严格评估数据源的质量

量化数据和预测的不确定性

从信息流中识别隐藏的模式

理解模型的局限性

理解数学证明及其背后的抽象逻辑

数据科学,就其本质而言,并不局限于某一特定的学科领域,它可以处理各种各样的现象,如癌症诊断和社会行为分析。这就产生了令人眼花缭乱的n维数学对象数组、统计分布、优化目标函数等的可能性。

函数、变量、方程和图形

这一领域的数学涵盖了基础,从方程的二项式定理和一切之间:

对数,指数,多项式函数,有理数

基本几何和定理,三角恒等式

实数和复数,基本性质

系列、金额、不平等

作图和绘图,笛卡尔坐标和极坐标,圆锥截面

可能用到的地方

如果您想了解在对百万条目的数据库进行排序之后,搜索是如何更快地运行的,那么您将会遇到“二分查找”的概念。要理解它的机制,你需要理解对数和递归方程。或者,如果你想分析一个时间序列,你可能会遇到“周期函数”和“指数衰减”这样的概念。

统计数据

掌握统计和概率的基本概念的重要性怎么强调都不过分。该领域的许多实践者实际上认为经典(非神经网络)机器学习只不过是统计学习。有重点的规划对于涵盖最基本的概念至关重要:

数据汇总和描述性统计,集中趋势,方差,协方差,相关性

基本概率:期望,概率微积分,贝叶斯定理,条件概率

概率分布函数:均匀、正态、二项式、卡方、中心极限定理

采样,测量,误差,随机数生成

假设检验,A/B检验,置信区间,p值

方差分析、t检验

线性回归,正规化

如果你已经掌握了这些概念,你将很快给人留下深刻印象。作为一名数据科学家,你几乎每天都会用到它们。

线性代数

这是数学的一个基本分支,用来理解机器学习算法如何在数据流上工作。从QQ上的好友推荐,到酷狗上的歌曲推荐,再到用深度转移学习将你的自拍照转换成萨尔瓦多·达利式的肖像,所有这些都涉及到矩阵和矩阵代数。以下是需要学习的基本数学:

矩阵和向量的基本性质:标量乘法,线性变换,转置,共轭,秩,行列式

内积和外积,矩阵乘法规则和各种算法,矩阵逆

特殊矩阵:方阵,单位矩阵,三角矩阵,单位向量,对称矩阵,厄米矩阵,斜厄米矩阵和酉矩阵

矩阵分解概念/LU分解,高斯/高斯-约当消去,解Ax=b线性方程组的方程

向量空间,基底,空间,正交性,正交性,线性最小二乘法

特征值,特征向量,对角化,奇异值分解

如果你用过降维技术(主成分分析),那么你可能已经使用奇异值分解以更少的参数实现了数据集的紧凑维数表示。所有的神经网络算法都使用线性代数技术来表示和处理网络结构和学习 *** 作。

微积分

不管你在大学里喜欢还是讨厌它,微积分在数据科学和机器学习中都有很多应用。这是一项极有价值的技能:

函数的单变量、极限、连续性、可微性

中值定理,不定式,洛必达法则

最大值和最小值

乘积与链式法则

泰勒级数,无穷级数求和/积分的概念

积分学的基本定理和中值定理,定积分和反常积分的计算

函数

多元函数,极限,连续性,偏导数

常微分方程和偏微分方程基础

想知道逻辑回归算法是如何实现的吗?它很有可能使用一种叫做“梯度下降”的方法来寻找最小损失函数。要理解它是如何工作的,您需要使用微积分的概念:梯度、导数、极限和链式法则。

离散数学

这一领域在数据科学中并不常见,但所有现代数据科学都是在计算系统的帮助下完成的,而离散数学是这些系统的核心。

集合,子集

计数函数,组合学,可数性

基本的证明技巧:归纳法、反证法

归纳、演绎和命题逻辑的基础

基本数据结构:堆栈、队列、图形、数组、哈希表、树

图的性质:连接的组成部分,程度,最大流量/最小切割的概念,图着色

递推关系与方程

在任何社会网络分析中,你需要知道一个图的属性和快速算法来搜索和遍历网络。在任何算法的选择中,你都需要理解时间和空间的复杂性。

优化和运营研究课题

这些主题在理论计算机科学、控制理论或 *** 作研究等专业领域最为相关。但是对这些强大技术的理解也可以在机器学习的实践中取得丰硕的成果。实际上,每一种机器学习算法的目标都是使受各种约束的某种估计误差最小化,这是一个优化问题。以下是需要学习的数学:

优化的基础,如何制定问题

极大值,极小值,凸函数,全局解

线性规划,单纯形算法

整数规划

约束规划,背包问题

使用最小二乘损失函数的简单线性回归问题通常有精确的解析解,但是逻辑回归问题没有。要理解其中的原因,您需要熟悉优化中的“凸性”概念。这一系列的研究也将阐明为什么我们必须对大多数机器学习问题的“近似”解决方案保持满意。

虽然有很多东西要学习,网上有很好的资源。在复习这些主题和学习新概念之后,你将有能力在日常数据分析和机器学习项目中听到隐藏的“音乐”。这是成为一个了不起的数据科学家的巨大飞跃。

想了解更多精彩内容,快来关注老胡说科学

1、若sinf(x)是奇函数,则f(x)是奇函数是不对,假设f(x)=2x或4x等,则f(x)是偶函数,而sin2x和sin4x还是奇函数。所以这句话是不对。

2、若x<0,则arctanx等于(A)

A、arccot(1/x) B、-arccot(1/x)

C、pai-arccot(1/x) D、arccot(1/x)-pai

这种选择题可以用特值法,假设X=-根号3,就可以选出来。

做选择题有,直接法,排除法,间接法,特值法

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/12179199.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存